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I n t r o d u c t i o n  

The purpose of this work is to derive an analytical approximation of the critical parameter 
value corresponding to the second period-doubling bifurcation (period-two to period-four 
bifurcation) in the three-dimensional autonomous system 

~c = # x -  y -  x z ,  

~1 = # y + z ,  (1) 
-_ _ z  + x2 z + y 2, 

where x, y, z are scalar variables and # the control parameter of the system. The origin 
of equations (1) is a stable equilibrium for # < 0 and unstable for # > 0 so that a Hopf 
bifurcation occurs at # = 0. As # increases from zero, the periodic orbit undergoes a 
symmetry-breaking bifurcation at # = #SB, and the first and the second period-doublings 
at p = ~PD1 and # = PPD2, respectively. As # increases again complicated dynamics takes 
place in the system. 

The system (1) has been investigated recently by several authors. Rand [7] used the center 
manifold theory to construct a first-order approximation of the periodic orbit near the Hopf 
bifurcation. An approximation to the critical value ~PDl(,-~ 0.45) WaS then calculated by 
performing a stability analysis of the orbit. Nayfeh and Balachandran [5] used the multiple 
scales technique to obtain the same first-order approximation of the periodic orbit than 
Rand [7]. The approximations #sB(~ 0.31) and PPDl(,.~ 0.446) to the critical values were 
obtained numerically using the Floquet theory [6]. Recently a higher-order expansion of the 
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periodic orbit using the multiple scales method has been derived [1]. Using this higher-order 
approximation, the stability analysis was achieved to predict the analytical approximations 
of the symmetry-breaking bifurcation #SB(~  0.31) and to improve the approximation of the 
critical value #PD1 ( ~  0.446). 

In this work we derive an analytical approximation of the critical parameter  value PPD~ 
corresponding to the period-two to period-four bifurcation point. Comparison with numerical 
simulation is also provided. 

Second p e r i o d - d o u b l i n g  

Using the method of multiple scales [4], a higher-order asymptotic expansion for the periodic 
orbit of the system (1) may be sought in the form 

6 

x = ~cnx ,~(To ,  T1,T2,T3, T4 ,Ts )+  " . ' ,  
n=O 

6 
y = ~ ¢ n y n ( T o ,  Ti,T2, T3, T4, Ts) + ' . ' ,  (2) 

n = 0  

6 

z = ~-~cnz.(To, T1,T2,T3, T4,Ts) + ' " ,  
n = 0  

where T,~ = ¢~t are the time scales and ~ is a small parameter. The control parameter is 
expanded as p = c2#~ + O(¢3). Substituting this last relation and Equations (2) into (1) 
and equating coefficients of like powers of ¢, we obtain at different orders of E the following 
systems of successive approximations x~, y,~, zn 

Doxi + yl = O, 

O ( E 1 )  : DoYl - X I  = 0 ,  (3) 

Dozl + zl = O. 

i i 

Doxi + Yi = #2xi-2  -- E x j z i - j  -- E D j x i - j ,  
j=o j=l 

i 

o(c i , i  > 2) : Doyi - xi = #2Yi-2 - E Djy i - j ,  (4) 
j = l  

) Dozi -4- z i = Y j Y i - j  -- E Djz i_3 ~- Xi_ ~ Zk32j_ k , 
j = 0  j=l j=O 

where D,~ - OT,~" For details see [1]. 

In the analysis followed in this work to calculate an approximation of the second period- 
doubling value #PD2, we postulate the solution of the system (3) as 

xl i [A le i~  + (1 2iT-o" .To] = -- 5q,i)A2e q JF (1 -- 5q,i)A3 ea' q JF C.C, 

1 [~ iT. , 2iTo X ~ 3 i T 0 ]  
: - [~le q + 2(1 - 5q,1)A2e q q- 3(1 - uq,i)~3e q J ~-- C.C, (5) Yl q 

Zl  = 0 ,  
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where q is an integer and aid is the Kronecker symbol. In the particular case q = 1, we 
recover the previous results given in [1]. The introduction of the subharmonic terms at the 
first order of the approximation of the solution allows an analysis bifurcation near the second 
period-doubling branch (see Figure 1). 

Following the same procedure as in [1], we obtain the set of conditions which vanish the 
secular terms as follows 

D~A1 = 0 and (1 - 5q,1)D1Aj = O, (j = 2, 3), (6) 

q q ~g 2 2i 4- T(A~ 
l + - -  

q 4 / ( 
+ i 3i A2A2A1 + (1 - 5q,1) 2~ 2i 1 - - 1 + - -  1 -  - -  l + - -  q q q q 

"}-(1 -- 5q,1) 2 (8 

+(1 - 5 q , 1 )  2 (18 + - -  2i AaAaA1 + (1 - 5q,~) 3 ~ - T33A~ 
1 - - -  1 1 - -  1+ 4i 

q q~ q q /  

(7) 

=0, 

4(1 - ~q,1) D2A2 
q 

+(1  -- 5q,1) ( 2 +  - -  

4(1  2I ( + ~  (1-~q,1) a 8 
1+ 4i 

+4 4 q ) - - i  + ( 3  i 3i A1A1A2 Jr- (1 -- (~q,1) 3 18 + 
1 

q q 

+(1-Sq,1) 2 (1+-~3 1+--64i +l_4q)i  -~2A1Aa 
q q 

12 

=0,  

1+ 5i 
q 

m 
AaAaA2 

(8) 

+(1 - ~q,1) (2 

+(1 - 5q,1) 2 (4 + 31+ / 
q 

q qSqa)#2Aa+@ [ l + q  

+ 2i 4i A1A1Aa Jr- (1 -- (~q,1) 3 18 6i 
1 + - -  1+  1+ 

q 

5i A2A2Aa + ( 1 -  5qa) 2 - - - T  - 4i ~A~ 
1 - -  1 + -  1 q q q /  

(9) 

=0. 
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1 

Substituting Aj(T1, T2) = 2aj(T1, T~)e izArl'r2) (where a and ~ are real quantities) into 

Equations (7)-(9), separating real and imaginary parts, we obtain for q = 1 the same ampli- 
tude equation that in [1]. 

For q = 2, the set of Equations (6)-(9) reduces to the following system 

10 dal 81 2 99 2 - - - a ~ a a +  
dT2 = #2al - a~ - -~-6a2al - i -~a3al  ~-~ala3, 

da2 dT2 = #2a2 - 9 a ~  - 129 a2 a 11 1359a2 a 
1- -~  1 2 - 8 - - - 6 a l a 2 a 3 - 2 - - ~  3 2, (10) 

daa 171 3 3 2 1 9  172 2a . 
dT2 -- # 2 a 3  - 3 - ~ a 3  - - ~ a 2 a l  -- ~ -~a2a3  

a2a 
- - 1 - ~  2 3 - -6 4  

Solving Equations (10) we obtain an approximation of the three amplitudes as follows 

103 i 26 
al -- 3 ~ # '  

63 
a2  ---- ~ - ~ a l ,  

14 
a3 ---- ~ - ~ a l .  

The stability analysis [1] leads here to the two equations 

20 25 3 
- 1  + V p p D  1 n c 3-~#PD1 = O, (11) 

4714450 5136947 3 
- 1  + 2392703#PD2 + ~ 8 ~ P D 2  --~ O. (12) 

Solving the Equations (11) and (12), corresponding to q = 1 and q = 2, respectively, we 
obtain an approximation of the first and the second period-doubling bifurcations PPD1 = 
0.446 and PPD2 = 0.486, simultaneously. To compare these critical parameter values with 
numerical calculations, see next section. 

Num e r i c a l  S t u d y  

In this section we describe the dynamical behaviour found numerically in system (1) in the 
vicinity of the two first period-doubling bifurcations. To do this, we have used the software 
continuation code AUTO94 [2]. 

The stability analysis of the Hopf bifurcation (see, for instance, [3]) reveals that it is 
supercritical: a stable symmetric periodic orbit emerges for/1, > 0. The evolution of this 
periodic orbit is schematized in the bifurcation diagram of Figure 1. In this qualitative 
figure we have indicated the Hopf bifurcation by an empty square, the symmetry-breaking 
bifurcation by an inverted triangle and the period-doubling bifurcation by a filled circle. Note 
that we represent the period of the T, 2T and 4T-orbits divided by 1, 2 and 4, respectively. 

First, the periodic orbit exhibits a symmetry-breaking bifurcation, SB (# = 0.3150232), 
to become a saddle orbit and a pair of asymmetric stable periodic orbits emerges. 

Now we focus on the pair of asymmetric stable periodic orbits emerged at SB. These 
orbits become saddle when they exhibit a period-doubling bifurcation, PD1 (# = 0.4403559). 
Note that this flip bifurcation was analytically predicted to occur for PPD1 = 0.446 [1], From 
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Period PD2 
PDI  

SB 
Hopf 

Figure 1: Partial bifurcation diagram of the periodic orbit emerged from the Hopf bifurcation. 
In this qualitative figure the solid line means stable periodic orbit and the dashed line saddle 
periodic orbit. 
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Figure 2: (a) Asymmetric periodic orbit, that emerged from SB, just at the flip bifurcation 
PD1 (# = 0.4403559). (b) 2T-orbit at the point PD2 (# = 0.4765392). (c) A stable 4T-orbit 
for # = 0.485. 
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such a bifurcation point a stable periodic orbit of approximately twice the period (2T-orbit) 
of the original orbit emerges. 

The asymmetric 2T-orbit (in fact a pair, due to the symmetry the system has) born at 
PD1 becomes non-stable in a flip bifurcation PD2 (# = 0.4765392) where a 4T-orbit emerges. 
The analysis developed in this work predicted this period-doubling bifurcation to occur for 
PPD2 = 0.486. 

Finally, we show, in Figure 2(a), the asymmetric periodic orbit, that emerged from SB, 
just at the point where it exhibits the flip bifurcation Pl)I. In Figure 2(b) we have represented 
the 2T-orbit at the point PD2. A stable 4T-orbit is showed in Figure 2(c), for # = 0.485. 

Conclusions 

The three-dimensional system considered in this paper has been investigated in terms of 
bifurcations in several papers [7, 5, 1]. Attention was focused principally on the symmetry- 
breaking and on the first period-doubling bifurcations following the Hopf bifurcation. In 
the present work we have studied the second period-doubling bifurcation. By introducing 
a suitable form of periodic solution at the first-order multiple scale expansion, we ha v~ 
derived two algebraic equations leading to an approximation of the first and the second 
period-doubling (period-one to period-two and period-two to period-four) bifurcations. The 
analytical procedure developed here provides these two bifurcations simultaneously, Th(, 
result given in [1] may be considered as a particular case of the one given here. For validating 
the analytical prediction regarding the critical value PPD2 numerical simulation was carried 
out and a good agreement was found. 
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