FINE STRUCTURE DEPENDENCE OF THE MOLECULAR LINE-BROADENING MECHANISM. APPLICATION TO THE $\mathbf{}^{\mathbf{2}} \boldsymbol{\Pi}_{1 / 2}$ AND ${ }^{\mathbf{2}} \boldsymbol{\Pi}_{3 / 2}$ STATES OF NO PERTURBED BY AT AND \mathbf{N}_{2}

J. BONAMY, A. KHAYAR and D. ROBERT
Laboratoire de Physique Moléculare, ERA No 834, Faculté des Sciences et des Technıques, 25030 Besançon Cedex France

Received 5 March 1981, in final form 19 June 1981

Abstract

Recent precise lunewidth measurements show a duferential broadening between vibration-rctation lines belonging to the ${ }^{2} \Pi_{1 / 2}$ and ${ }^{2} \Pi_{3 / 2}$ sub-bands of NO perturbed by argon or nitrogen. A semiclassical model including anisotropic short-range interactions, using bent trajectones, accounts for the effect. The mechanism causing this effect is discussed.

1. Introduction

An experimental study of the vibration-rotation linewidths of the allowed fundamental bands of nitric oxide was made some time ago by Alamichel and coworkers [1-3]. The interferometric method was not sufficiently sensitive to show a significant difference between elther the corresponding lines of the diamagnetic ${ }^{2} \Pi_{1 / 2}$ and of the paramagnetic ${ }^{2} \Pi_{3 / 2}$ sub-bands. Nevertheless these authors suggested such a possible differential broadening which they estimated through a calculation using the Anderson theory $[4,5]$. But as they pointed out, such a theory is not so refined as to permit a reliable calculation of thus small magnetic effect.

Thus experiment was reinvestigated by Tejwani et al. [6] and extended to foreign-gas perturbers (N_{2} and O_{2}). The low-resolution spectrometer also prevented observation of any magnetic effect on the linewidths, the Λ doublet of each ${ }^{2} \Pi_{1 / 2}$ and ${ }^{2} \Pi_{3 / 2}$ sub-band being not sufficiently resolved. These authors also calculated the linewidths in the Anderson frame but no attempt was made to calculate a differential broadening between the two sub-bands.

Henry et al. [7] reported the first precise measurements exhbiting the abovementioned magnetic effect for NO perturbed by argon and nitrogen. More precisely, they observed in the fundamental vibrational band an exaltation of the line-broadening coefficient; for a given rotational transition, when passing from the ${ }^{2} \Pi_{1 / 2}$ state
to the ${ }^{2} \Pi_{3 / 2}$ one. These broadening coefficients were deduced from an analysis of high-resolution spectra obtamed with a grating spectrometer.

Such results were confirmed by Rohrbeck et al. [8] with two different techniques, by conventional absorptıon spectroscopy as in ref. [7] using a tunable spin-flip Raman-laser spectrometer, and by Zecman modulation spectroscopy.

A reliable calculation aiming to account for such a small magnetic effect on the line broadening needs a theory including a realistic description of the close collisirns for $\mathrm{NO}-\mathrm{N}_{2}$ and a fortioni for $\mathrm{NO}-\mathrm{Ar}$. Indeed for these molecular pairs, the close collisions are very efficient for high rotational levels due to the absence of significant dipolar interaction. A convenient formalism taking into account the short-range interactions has been proposed [9]. The present paper is devoted to an a priori calculation of the line-broadening coefficients for $\mathrm{NO}-\mathrm{Ar}$ and $\mathrm{NO}-\mathbf{N}_{2}$ in the two ${ }^{\mathbf{2}} \mathrm{H}_{1 / 2}$ and ${ }^{2} I_{3 / 2}$ sub-bands starting from the theoretical approach of ref. [9] but adapted to the specific NO case.

2. Resulus and discussion

The semiclassical theory for the present linewidth $\boldsymbol{\gamma}_{\mathrm{f}}$ calculation for a $\boldsymbol{v}_{\mathrm{f}} \boldsymbol{J}_{\mathrm{f}} \leftarrow \boldsymbol{v}_{\mathrm{i}} \boldsymbol{J}_{\mathrm{i}}$ transition has been developed in ref. [9] where the corresponding analytical expression may be found. This expression allows a realistic estimation of $\boldsymbol{\gamma}_{\mathrm{fi}}$ avoiding any cut-off procedure
by including the anusotropic short-range interaction potential and by using bent trajectones No a prion determunation of the anisotropic potential energy is available for $\mathrm{NO}-\mathrm{Ar}$ and $\mathrm{NO}-\mathrm{N}_{2}$ So we have represented it by the superposition of the atom-atom model [10] and of the multipolar interactions (dipole-quadrupole $V_{\mu_{1}} Q_{2}$ and quadrupole-quadrupole $V_{Q_{1}} Q_{2}$). Such a representation has been successfully applied to broadening for several gas mistures [9,11]. The charactenstic parameters tied to these potentials are given in table 1 Figs. $1 a$ and 16 exhibit the behaviour of these potential surfaces for $\mathrm{NO}-\mathrm{Ar}$ and $\mathrm{NO}-\mathrm{N}_{2}$ through the radial dependence of $U_{I_{1} l_{2} m}(r)$ defined by eq. (33) of ref. [9].

Recall that the electronic ground state of the NO molecule is a ${ }^{\mathbf{2}} \Pi$ state because of an unpared electron So the expression for $\gamma_{\mathrm{f}_{1}}$ given in ref [9] for diatomic molecules in a Σ state must be modified to take into account the change of the vibration-rotation states Indeed, the absolute value of the component of the electronic orbital angular momentum along the internuclear axis $(\Lambda=1)$ is strongly coupled to the correspondmg spin angular momentum component ($\Sigma= \pm 1 / 2$). The resultung component for the total electronc angular momentum Ω is $1 / 2$ and $3 / 2$. The $\lambda-\Sigma$ coupling for NO is intermediate between Hund's cases (a) and (b) [1,2]. The energy level expressions and the wavefuncthons for the ${ }^{2} \Pi$ state of NO were taken from refs [16, 17] Moreover, each level (J, K) is splut in a Λ doublet due to the coupling between the rotation of the molecule and the orbital motion of the electrons. Of course the transitions induced by collisions between the varnous vabranion-rotation states in a 2Π sub-band must satisfy the usual symmetry rules [14].

The calculated values for the half-width at half mtensity $\gamma_{f_{1}}$ are given in tables 2 and 3 together with the avalable expenmental data Good consistency is obtained for the observed transitions of both molecular pars $\mathrm{NO}-\mathrm{Ar}$ and $\mathrm{NO}-\mathrm{N}_{2}$ In particular the increase of $\gamma_{f i}$ when passing from the diamagnetic ${ }^{2} \Pi_{1 / 2}$ sub-band to the paramagnetic ${ }^{2} \Pi_{3 / 2}$ one is reproduced. This differential broadening which is maximum for transitions between low rotational levels varushes for high rotational ones in accord with the observed behaviour [7] The calculations were made with several sets of energy parameters for the N atom in the NO molecule as it is impossible to decide which ones are better at the present stage [13]. All results are however very close for $\mathrm{NO}-\mathrm{N}_{2}$, the maximurn difference with respect to results
presented in table 3 being 4% for $J_{1}=39 / 2$. On the contrary, for NO-Ar, only one set of parameters (see table 1) gives results in good accord with experiment. It is interesting to analyze the physical mechanism underlying such behaviour.

For simplicity we first discuss the NO-Ar case. Detals of the calculation make it appear that the most efficient collisions are due to the second-crder contnbution V_{2} in the anisotropic potential, mainly through the repulsive part of the corresponding $U_{200}(r)$ coefficient. Thus is easily understood from fig. la since, for all intermolecular distances r, the first-order coefficient $U_{100}(r)$ is less intense than $U_{200}(r)$. In order to present a qualitative analysis of the magnetic effect on the line broadening, only transitions for which the resonance factor argument is nearly zero are considered. Indeed, for low J_{1} values, all the induced transitions are quasiresonant due to the low rotational constant of NO (cf table 1) except the transitions induced between the ${ }^{2} \Pi_{1 / 2}$ and ${ }^{2} \Pi_{3 / 2}$ states, but their contribution was found to be negligible Note, concernung the line broadening, that the NO states may be described by symmetnctop wavefunctions $\psi_{J K M}$ with $K=\Omega=1 / 2$ and $3 / 2$ for the ${ }^{2} \Pi_{1 / 2}$ and ${ }^{2} \Pi_{3 / 2}$ electronic states respectively, corresponding to Hund's pure case (a) coupling. This argument no longer stands if one considers the positions or intensities of the rotation lines for which the intermediate couplung description is necessary, especially for high J values. Thus leads for ${ }^{2,0} S_{2}\left[r_{c}(b)\right]$ (cf. appendix C of ref. [9]), which is the major contribution to the differential collision cross section, to

$$
\begin{align*}
& 2,0 S_{2}\left[r_{\mathrm{c}}(b)\right]=\frac{9675}{5760}\left(\pi / \hbar v_{\mathrm{c}}^{\prime}\right)^{2} \\
& \quad \times\left\{\left(\sum_{i /} r_{1 i}^{2} e_{i j}\right)^{2} r_{\mathrm{c}}^{-14}\left[\left(2+D^{(2)}\right) f_{8}^{8}(0)\right]\right. \\
& \quad-\frac{9.771}{1720}\left(\sum_{i} r_{1 i}^{2} e_{i j}\right)\left(\sum_{i j} r_{1 i}^{2} d_{i j}\right) r_{\mathrm{c}}^{-20}\left[\left(2+D^{(2)}\right) f_{8}^{14}(0)\right] \\
& \left.\quad+\frac{8377677}{1100800}\left(\sum_{i j} r_{1 i}^{2} d_{i j}\right)^{2} r_{\mathrm{c}}^{-26}\left[\left(2+D^{(2)}\right) f_{14}^{14}(0)\right]\right\} .(1) \tag{1}
\end{align*}
$$

In this equation r_{c} and v_{c}^{\prime} are parameters tied to the bent trajectory [9] (instead of b and v for a linear trajectory described at constant velocity), $r_{1 i}, e_{j}$ and $d_{i j}$ charactenze the atom-atom potential (cf, table 1). The resonance functions $f_{n}^{m}(k)$ are defined in appendix A of ref. [9] and are not equal to unity for exact reso-
Physical parameters characterizing the $\mathrm{NO}-\mathrm{Ar}$ and $\mathrm{NO}-\mathrm{N}_{2}$ potentil energy ${ }^{\text {a) }}$ $V=V_{\mathrm{A}}+V_{\mathrm{E}}=\sum_{l, l}\left(d_{i j} / r_{l, 2 l}^{12}-c_{i j} / r_{1 l, 2 l}^{6}\right)+V_{\mu_{1} Q_{2}}+V_{Q_{1} Q_{2}} \equiv 4 \pi \sum_{l_{1}, l_{2} m} \sum_{\sum_{1}=-\inf \left(l_{1,}, l_{2}\right)}^{\operatorname{minf}\left(l_{1}\right)}$

e(K) $\left.\left.{ }^{\text {b) }} \quad a(A)^{\text {b }} \quad \quad d_{I I}\left(\text { kcal }^{12} / \text { mole }\right)^{\text {c }}\right) \quad e_{I I}\left(\text { (kal } A^{6} / \text { mole }\right)^{\text {c }}\right)$
$\begin{array}{lllll}\text { NO-Ar } & 1128 & 3575 & d_{N-A r}=1258592 \quad e^{\prime} \text { N-Ar }=822\end{array}$
$\begin{array}{lllll}\mathrm{NO}-\mathrm{N}_{2} & 1188 & 3578 & d_{\mathrm{N}-\mathrm{N}}=418679 & c_{\mathrm{N}}-\mathrm{N}=360\end{array}$
$\begin{array}{cc}\mathrm{NO}-\mathrm{N}_{2} & 1188 \\ & (104.1)\end{array}$
(104.1)
NO (cf ref. [9] for sumilar cases) The effet has been disregarded in the present calculations
b) Values deduced from figs la and Ib, und trom ref. [12|(..) c) Refa. [12,13|. d) Rol.[14|. e) Rel [15]

Table I
Fig 1.

Table 2
Calculated and observed values for the NO-Ar half-wndth at half intensity $\gamma_{\boldsymbol{f}}$ in the R branch (in $10^{-3} \mathrm{~cm}^{-1} \mathrm{~atm}^{-1}$)

J_{1}	$K=1 / 2$			$K=3 / 2$		
	2)	b)	c)	a)	b)	c)
1/2	48%	556	35	-	-	\sim
3/2	47.2	-	(515)	474	-	-
5/2	46.3	-	(485)	47.5	-	-
7/2	455	-	455	465	-	51
9/2	449	517	(435)	456	573	(49)
11/2	445	-	(+2)	45	-	(47)
13/2	442	-	(39 5)	445	-	(45.5)
15/2	438	-	(37)	$4+1$	-	(425)
1712	434	-	(36 5)	436	-	(42)
19/2	428	-	(36)	43	-	(41)
21/2	421	-	355	423	-	40
23/2	$41+$	-	(35)	416	-	(39 5)
25/2	406	-	(35)	+0 3	-	(39)
27/2	398	-	(35)	40	-	(38)
29/2	39	-	(35)	392	-	(37)
31/2	382	-	345	384	-	365
33/2	373	-	(345)	375	-	(36)
35/2	365	-	(345)	367	-	(35 5)
37/2	357	-	(34)	359	-	(35 5)
39/2	349	-	(335)	351	-	(35)
41/2	341	-	32	342	-	33

a) Calculated values [this work. in Hund's case (a)]
b) Experimental values from ref [8]-
c) Expermmental values from ref [7] Vlost of the reported values () have been miterpolated from fig 1 of ref [7] The e , peimental error is $\approx 5 \sigma_{c}$
nance due to their dependence on r_{c} and $v_{c}^{\prime *}$. In eq. (I) the dependence of ${ }^{2,0} S_{2}\left[r_{c}(b)\right]$ on the optical rotauonal quantum numbers (J_{1} and J_{f}) appears only through the $D^{(n)}$ factor for $n=2$ defined by

$$
\begin{align*}
& D^{(n)}=(-\mathrm{I})^{J_{1}+J_{\mathrm{f}}} 2\left[\left(2 J_{1}+1\right)\left(2 J_{\mathrm{f}}+1\right)\right. \\
& \left.\quad \times C\left(J_{1} n J_{1}, K 0 K\right)^{2} C\left(J_{\mathrm{f}} n J_{\mathrm{f}} ; K 0 K\right)^{2}\right]^{1 / 2} \\
& \quad \times w^{\prime}\left(J_{1} J_{\mathrm{f}} J_{1} J_{\mathrm{f}}, 1 n\right) \tag{2}
\end{align*}
$$

In eq (2) only the Clebsch-Gordan coefficients C depend on the electronic state through the quantum number $K \equiv \Omega=1 / 2$ or $3 / 2$, the Racah coefficient ${ }^{\prime}$ being K undependent. Thus, the variation of the broadening coefficient between the two sub-bands for a given rotational line $J_{1} \rightarrow J_{\mathrm{f}}$ results from the dependence of $C\left(J_{1} 2 J_{1}, K O K^{-}\right) C\left(J_{f} 2 J_{f}, K O K\right)$ on K Table 4 shows the calculated values of $D^{(n)}(n=1$ and 2) versus J_{1} and K for the R branch. As clearly seen in table 4 b , the algebraic $D^{(2)}$ values are substantially hugher for $K=3 / 2$ than for $K=1 / 2$ for low J_{1} values (by a factor 4 for $J_{1}=3 / 2$) This difference is less and less important as J_{1} increases. As a result of this variation of $D^{(2)}$ versus J_{1} and K, the ${ }^{2,0} S_{2}\left[r_{c}(b)\right]$ contribution to the differential collision cross section

F In ref [9] the resonance function $f_{p}^{p}(0)$ has been systematically omitted as a product factor of D in the ${ }^{2,0} S\left[r_{c}(b)\right]$ contribution This error was a typographical omission and was not present in the computational program

Table 3
Calculated and observed values for the NO $-N_{2}$ half-width at half intensity $\gamma f i$ in the R branch (in $10^{-3} \mathrm{~cm}^{-1} \mathrm{~atm}^{-1}$)

J_{1}	$K=1 / 2$						$K=3 / 2$					
	a)	b)	c)	d)	e)	f)	a)	b)	c)	d)	e)	f)
1/2	68.5	601	710	65.0	650	-	-	-	-	-	-	-
5/2	66.1	548	-	-	-	-	684	593	-	-	-	-
9/2	639	515	-	581	(50)	-	658	547	-	599	(55)	-
19/2	594	44.0	-	-	(49.5)	55.0	603	45.5	-	-	(54)	600
21/2	586	42.6	-	-	495	-	594	439	-	-	54	-
33/2	494	294	520	-	(49)	-	502	303	520	-	(52)	-
41/2	399	193	-	-	46	-	407	200	-	-	47	-

[^0]Table 4
Dependence of $D^{(n)}$ on J_{1} in the R branch for the ${ }^{2} \Pi_{1 / 2}$ and ${ }^{2} \Pi_{3 / 2}$ sub-bands

	J_{1}	w	$C_{J_{2}} C_{J_{f}}$		$D^{(n)}$	
			$K=1 / 2$	$K=3 / 2$	$K=1 / 2$	$K=3: 2$
(a) $n=1$	1/2	02635	01491	-	-0.2222	-
	3/2	01870	00437	03928	-00801	-0.7197
	$5 / 2$	01383	00213	01917	-00408	-0.3674
	7/2	0.1090	00127	0.1140	-00248	-0 2223
	$9 / 2$	00898	0.0084	00756	-00165	-0.1487
	11/2	0.0762	0.0060	0.0539	-0.0119	-0.1065
	13/2	00662	00045	00404	-0.0089	-00801
	21/2	00434	00019	00171	-0.0038	-00341
	33/2	00285	00008	0.0073	-00016	-00146
	41/2	0.0232	0.0005	00048	-0.0010	-00096
(b) $n=2$	1/2	0	0	-	0	-
	$3 / 2$	0.1528	0.2138	00535	-0 3201	-0.0801
	$5 / 2$	01263	02333	0.0350	-0 4083	-0.0613
	$7 / 2$	01034	02402	0.1081	-04443	-0.1999
	9/2	00867	0.2436	0.1514	-0.4627	-0.2876
	11/2	0.0744	0.2455	0.1779	-04735	-0.3431
	13/2	00650	02437	0.2029	-0.4742	-0.3948
	21/2	0.0430	02457	0.2345	-0.4855	-04634
	33/2	00284	0.2482	0.2433	-0.4932	-0.4835
	+1/2	00232	02487	02455	-0.4961	-0.4897

is hugher for the vibration-rotation lines belongng to the ${ }^{2} \Pi_{3 / 2}$ sub-band than for those belonging to ${ }^{2} \Pi_{1 / 2}$ (cf. eq. (1) and table 4b), in good accord with the observed behaviour.

Note here that the $D^{(1)}$ coefficients (cf. table 4a) decrease from $K=1 / 2$ to $K=3 / 2$ (for a given J_{1} value) in opposition to $D^{(2)}$. Thus the ${ }^{1,0} S\left[r_{\mathrm{c}}(b)\right]$ contribution resulting from the first-order V_{1} term in the anisotropic potential hudes partially the differential broadening considered here. However the V_{1} contribution is small (cf. fig 1a). It appears from the above considerations that the magnitude of this differential broadening between the two sub-bands is connected to the relative contributions of the even and odd sphencal harmonics in the intermolecular anisotropic potental (cf. footnote to table 1). Moreover, all the K dependence comes from the $\Delta J=0$ transitions through the $D^{(n)}$ term. For $n=1$, these are the induced transitions between the Λ doublets and for $n=2$, they are elastic transitions. The result of the calculation is that all the $\Delta J=0$ induced transitions contribute to the broadening by a very small amount (cf. tables 2 and 3).

The above discussion for NO-Ar may easily be ex-
tended to NO $-\mathrm{N}_{2}$. For low J_{1} values, the electrostatic $V_{\mu_{1} Q_{2}}$ and $V_{Q_{1}} Q_{2}$ interactions dominate the broadening mechanusm (cf. table 3). The $V_{\mu_{1}} Q_{2}$ and $V_{Q_{1}} Q_{2}$ potentals would exhubit the same behaviour as V_{1} and V_{2} respectively. So, the quadrupole-quadrupole interaction, being predominant due to the weak dipole moment of NO (cf. table 1), introduces a differental broadening between the two sub-bands as observed experimentally. In table 3 we report the calculated values including the two abovementioned electrostatic potentials with and withour considering the anisotropic atom-atom potential contributions. As may be seen in table 3 , these two sets of values exhibit an increasing difference as J_{1} increases. Recall that all these values are calculated usung bent trajectories [9]. Note at this point that a simular calculation performed with straightune trajectones described at constant velocities and only taking into account the long-range multipolar interactions leads to values closer to the (a) set (cf. ref. [6]). But close collisions are domindnt for high J_{i} values. Thus the last classical trajectory model becomes unrealistic and the conresponding calculated values lose their fhysical meaning.

Although overall agreement is obtained between the present linwidth calculations and the experimental data, the quantitative differential broadening is discussed further. Indeed, while a number of authors have confirmed the existence of such a differential effect $[7,8,18]$, different values for its amplitude have been measured (for $\mathrm{NO}-\mathrm{N}_{2}$ and $J_{\mathrm{i}}=9 / 2$, the experimental effect varies between 3% [8] and 10% [7], the calculated one being 3%). Nevertheless for $\mathrm{NO}-\mathrm{Ar}$, if the measured absolute values are significantly different (cf. table 2), the relative differential effect is the same ($\approx 11 \%$ for $J_{\mathrm{i}}=7 / 2$, the calculated one being 2%). Our calculated values seem to underestimate the differential broadening so the following points are considered. On the one hand, as explained above, the relative contribution of the even and odd components to the anisotropic intermolecular potential appears as determinative for such an effect and the present potential model suffers some uncertainty for NO [13]. On the other hand, the calculation model does not take into account the possible influence of the nature of the ${ }^{2} \Pi_{1 / 2}$ and ${ }^{2} \Pi_{3 / 2}$ sub-bands for hard collisions (i.e. for impact parameters lower than the kinetic diameter), all the K dependence coming from the weak collisions [cf. eqs. (1) and (2)]. Indeed this model does not include the multiquantum exchanges [9] which may be of importance for hard collisions. A more elaborate model including such exchanges like that of ref. [19], available for the diatom-atom case, might be used to re-examine this point for NO-Ar.

3. Conclusion

The present calculated values and the experimental ones (tables 2 and 3) compare well. More precisely the ne-broadening coefficient γ_{fi} exhibits the correct de-
dence on the initial rotational quantum number J_{i} id the observed increase of the line broadening for a given vibration-rotation line when going from the dia-
magnetic ${ }^{2} \Pi_{1 / 2}$ to the paramagnetic ${ }^{2} \Pi_{3 / 2}$ is reproduced. The mechanism causing this differential effect has been studied in the present paper. It results for $\mathrm{NO}-\mathrm{Ar}$ and $\mathrm{NO}-\mathrm{N}_{2}$ from the elastic transitions induced by collisions in the initial and final optical states $\left(J_{i} \rightarrow J_{i} ; J_{f} \rightarrow J_{f}\right)$ which depend strongly on the electronic state for low J_{i} values (cf. table 4).

References

[1] C. Alamichel, Thesis, Paris (1965).
[2] C. Alamichel, J. Phys. 27 (1966) 345.
[3] L. Hochard-Demolliere, C. Alamichel and Ph. Arcas, J. Phys. 28 (1967) 421.
[4] P.W. Anderson, Phys. Rev. 76 (1949) 647.
[5] C.J. Tsao and B. Curnutte, J. Quant. Spectry. Radiative Transfer 2 (1962) 41.
[6] G.D.T. Tejwani, B.M. Golden and E.S. Yeung, J. Chem. Phys. 65 (1976) 5110.
[7] A. Henry, F. Severin and L. Henry, J. Mol. Spectry. 75 (1979) 495.
[8] N. Rohrbeck, R. Winter, W. Herrmann, J. Wildt and W. Urban, Mol. Phys. 39 (1980) 673.
[9] D. Robert and J. Bonamy, J. Phys. 40 (1979) 923.
[10] T.B. Macrury, W.A. Steele and B.J. Berne, J. Chem. Phys. 64 (1976) 1288.
[11] A. Khayar and J. Bonamy, J. Quant. Spectry. Radiative Transfer, to be submitted for publication.
[12] J.O. Hirschfelder, C.F. Curtiss and R.B. Bird, Molecular theory of gases and liquids, 4 th Ed. (Wiley, New York, 1967).
[13] M. Oobatake and T. Ooi, Progr. Theoret. Phys. 48 (1972) 2132.
[14] G. Herzberg, Spectra of diatomic molecules (Van Nostrand, Princeton, 1966).
[15] D.E. Stogryn and A.P. Stogryn, Mol. Phys. 11 (1966) 371.
[16] A. Goldman and S.C. Schmidt, J. Quant. Spectry. Radiative Transfer 15 (1975) 127.
[17] J.A. Miller, C.F. Coll and C.F. Melius, J. Quant. Spectry. Radiative Transfer 21 (1979) 193.
[18] J.A. Sell, J. Quant. Spectry. Radiative Transfer 25 (1981) 19.
[19] E.W. Smith, M. Giraud and J. Cooper, J. Chem. Phys. 65 (1976) 1256.

[^0]: a) Calculated values (this work) with atom-atom + electrostatic $V_{\mu_{1} Q_{2}}$ and $V_{\Omega_{1}} Q_{2}$ interactions
 b) Calculated values (thus work) u_{1} th onlv the electrostatic interactions
 c) Expermental values from ref [6] in which the ${ }^{2} \Pi_{1 / 2}$ and ${ }^{2} \Pi_{3 / 2}$ components having the same J_{1} are assumed to have identical half widths
 d) Expermental values from ref. [8]
 ${ }^{\text {e) }}$ Expermmental values from ref [7] Some of the reported valucs (.) have been interpolated from fig. 1 of ref. [7]
 f) Expermental value from ref [18].

