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1 Introduction 

The problem of induction motor control and observation  
has been given a great deal of interest over the last decade 
(see, e.g., Ortega et al., 1996; Caron and Hautier, 1995; Hu 
et al., 1996; Belkheiri and Fares, 2008; Bouchhida et al., 
2008). However, most of the previous works have been 
based on the standard model where the magnetic 
characteristic is described by a linear relation. As a matter 
of fact, such a characteristic is non-linear in physical 
machines: it exhibits saturation and hysteresis features. To 
achieve high-performance varying-speed operation mode 
for induction machines, it is necessary to use controllers that 
allow large flux variations. Indeed, allowing large flux 
variations makes possible the achievement of a suitable 
power factor and a high efficiency (by limiting current 
absorption). But, in order to allow large flux variations the 
controller must be developed by using a model that takes 
into account the non-linear nature of the machine magnetic 
characteristic. The question is: how such model can be 
obtained? 

The present work precisely focuses on such a modelling 
issue. This has been coped with (Sullivan and Sanders, 
1992; Novotnak, 1995; Pedra et al., 2009) by just letting the 
mutual inductance coefficient associated with a given rotor 
flux direction (d or q) be a non-linear function of the stator 
current along the same direction. This assumption is not 
realistic because it amounts to neglect the cross-saturation 
feature. Furthermore, neither the non-linear functions 
approximating the mutual inductances nor the resulting 
(saturated) model are explicitly described in the mentioned 
works. The present paper develops a new approach that 
appropriately accounts for the magnetic saturation 
phenomenon in induction machine modelling. It thoroughly 
contrasts with the previous approaches which heavily relied 
upon the standard unsaturated model. Presently, the starting 
point is the machine electric equivalent scheme where the 
stator and the rotor are represented by triphase coils 
(Leonhard, 2001). Additional physical laws will be applied 
to account for the (well-known) coupling that exists (even in 
the case of a uniform air-gap machine) between both axes of 
an AC-machine (Levi, 1997). Such a coupling (usually 
called cross-saturation), is due to the non-linear properties 
of magnetic materials. As suggested in Garrido et al. (1995), 
the magnetic characteristic can be approximated by a  
non-linear function that could be polynomial, exponential, 
arctangent, etc. Such a function links the air-gap flux Фμ to 
the magnetising current Iμ (this includes the contribution of 
both stator and rotor currents). The obtained model is 
experimentally validated using a 7.5 kW AC-machine  
(see Ouadi, 2004). The input signals are chosen so that the 
machine operates both in the linear and non-linear parts of 

the corresponding magnetic characteristic. The resulting 
responses of the new model turn out to be sufficiently close 
to those of the true machine. On the contrary, the standard 
model responses are not so close, especially when the 
machine operates in the saturation part. 

The paper is organised as follows: Section 2 is devoted 
to modelling the magnetic characteristic of the studied 
machine; the remaining electromechanical equations are 
established in Section 3; in Section 4, the static 
magnetisation parameter is introduced and in Section 5, 
machine modelling is completed by establishing its state-
space representation; an experimental validation of the 
obtained model as well as a comparison with the standard 
model are performed in Section 6. 

Table 1 Notations 

Rs, Rr Stator and rotor resistances 
ls, lr Stator and rotor leakage inductances 

(constant parameters) 

φμ Magnetising flux at a stator phase (flux 
within the air-gap) 

Φμ Norm of the flux φμ 

φs Stator flux (through one phase) 

φr Rotor flux (through one phase) 

is, ir Stator and rotor currents (through one 
phase) 

'
ri  Current in a rotor phase brought back to the 

stator, ' j
r ri i e θ=  

Iμ Magnetising current iμ = is + '
ri ; Iμ is its 

norm 
ks, kr Coefficients of the stator and rotor coils, 

respectively 
ns, nr Number of conductors beneath each stator 

pole (resp. rotor pole) 
Ω, ωs Machine angular speed and stator current 

frequency, respectively 
ωr Rotor current frequency (ωr = ωs − ω) 
Ω Rotation speed of the machine rotor, one 

has w = pΩ. 
θ, θs Angular positions of the rotor and rotating 

field, respectively 
Te, TL Electric motor torque and load torque, 

respectively 
J Rotor inertia 
P Number of poles pairs 
[vs]123 [vr]123 Triphase stator and triphase rotor voltage, 

respectively 
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Table 1 Notations (continued) 

[φs]123 [φr]123 Triphase stator and triphase rotor flux, 
respectively 

[is]123 [ir]123 Triphase stator and triphase rotor current, 
respectively 

[vsd vsq] [vrd vrq] (d, q) components of stator and rotor 
voltages 

[isd  isq] [ird  irq] (d, q) components of stator and rotor 
currents 

[φsd φsq] [φrd φrq] (d, q) components of stator and rotor fluxes 

[φμd φμq] (d, q) components of the magnetising flux 

Pk(Ψ) Park transformation (Ψ is its angle) 

r r

s s

k nk
k n

=  
Transformation ratio of the AC machine 

2 Characterisation of magnetic saturation in AC 
machines 

The non-linear feature of the magnetic circuit in induction 
motors has been accounted for in many ways. Early 
solutions suggested capturing this through non-linear 
approximations of the (B, H) characteristic (Leonhard, 
2001; Seguier and Notelet, 2005). In more recent works, the 
magnetic saturation is accounted for through a flux-current 
relation called magnetic characteristic. This links the 
magnetising flux norm (i.e., the useful flux at a stator phase) 
to the magnetising current (Levi, 1997). Several laws have 
been suggested to describe the magnetic characteristic, e.g.,: 

1
1 2

2 or .
( ) n

I
n n

s s
I I s

b
μ γ

μ μ μ μ
μ

αβ
− −

−
Φ = = + Φ

+Φ
 

In the present work, a spline polynomial approximation is 
developed to approach the non-linearity of the magnetic 
circuit. Let the (unknown) real magnetic characteristic be 
denoted Iμ = λ(Φμ). Our purpose is to build up a polynomial 
approximation for λ(Iμ). The first step consists in obtaining 
experimentally a set of points of the real machine 
characteristic. A spline interpolation of the experimental 
points is then performed, using suitable tools, to get a 
polynomial approximation, denoted P(.) of the unknown 
function λ(.). The larger the degree of P(.), the more smooth 
and accurate the approximation. Figure 1 shows the 
polynomial P(.) obtained with n = 8. In the sequel, we will 
also need an approximation of the inverse characteristic  
Iμ = λ–1(Φμ). A polynomial approximation Pinv(.) is obtained 
directly from the available experimental set of points, using 
the same tools as previously (Figure 2). 

Remark 1. Figure 1 shows that the largest linear zone of the 
magnetic characteristic corresponds to small values of the 
flux (Φμ < 0.7 Wb) whereas the machine nominal point, 
presently equal to Φμ = 0.9 Wb, is located at the saturation 
elbow. 
 

Figure 1 Magnetic characteristic Φμ = λ(Iμ) (see online version 
for colours) 
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Figure 2 Inverse magnetic characteristic Iμ = λ–1(Φμ) 
(see online version for colours) 
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3 Induction machines equations 

3.1 Park transformation of the stator and rotor 
voltages 

The modelling is based on standard assumptions i.e., the 
machine is symmetrical, the air gap is smooth, the 
ferromagnetic losses are negligible, the induction 
distribution through the air gap is sinusoidal and all 
electromagnetic variables ([φs]1,2,3, [φr] 1,2,3,[is]1,2,3,…) define 
a well balanced triphase system, i.e., φs1 + φs2 + φs3 = 0. 
Applying the Park transformation to the triphase equations 
yields the following electrical equations, completed by the 
mechanical equation (see e.g., Leonhard, 2001 and Seguier 
and Notelet, 2005):  

.sd s sd sd s sq
dV R i
dt
φ ω φ= + −  (1) 

.sq s sq sq s sd
dV R i
dt
φ ω φ= + +  (2) 

0 . ( )r rd rd s rq
dR i
dt
φ ω ω φ= + − −  (3) 
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0 . ( )r rq rq s rd
dR i
dt
φ ω ω φ= + + −  (4) 

e LT Td f
dt J J J
Ω
= − − Ω  (5) 

3.2 Saturated flux equations in the (d, q) coordinates 
system 

The magnetic fluxes for the stator and rotor phases are 
given by (see Leonhard, 2001 and Seguier and Notelet, 
2005): 

/s leakage st s sl iμ μφ φ φ φ= + = +  (6) 

/r leakage rt r r r rl iμ μφ φ φ φ= + = +  (7) 

where φμ and φμr respectively denote the magnetising  
air-gap fluxes along one phase of the stator and rotor; 
φleakage/st and φleakage/rt respectively denote the stator and rotor 
leakage fluxes. Equalities (6) to (7) mean that φleakage/st and 
φleakage/rt are respectively proportional to the stator and rotor 
currents. This is valid in real machines because the leakage 
flux, circulating in air, not in iron, is not large. Let k denote 
the machine transformation ratio. The flux equations (6) to 
(7) become, in the (d, q) coordinates: 

sd s sd dl i μφ φ= +  (8) 

sq s sq ql i μφ φ= +  (9) 

rd r rd dl i k μφ φ= +  (10) 

rq r rq ql i k μφ φ= +  (11) 

The contribution of the stator and rotor in the air-gap flux 
generation is expressed in term of the magnetising current, 
denoted iμ (Leonhard, 201l; Levi, 1997). Therefore, the  
(d – q) components of the [iμ]123 system satisfy: 

 and µd sd rd µq sq rqi i k i i i k i= + = +  (12) 

The non-linear feature of the machine magnetic 
characteristic causes cross-saturation effect (Levi, 1997; 
Vagati et al., 2000) i.e., the component of a given (stator, 
rotor or magnetising) flux, along a given (d or q) axis is 
dependent on both the d- and q-components of both stator 
and rotor currents. Inspired from Garrido et al. (1988), the 
cross-saturation effect is accounted for letting the 
magnetising flux be expressed as follows: 

0d d d dq q dM i M iμ μ μφ φ= + +  (13) 

0q q q dq d qM i M iμ μ μφ φ= + +  (14) 

where Md, Mq and Mdq are new inductive parameters and: 

iμd, iμq denote the (d, q) components of the magnetising 
current 

Md iμd is the magnetising flux generated, along the d-axis, by 
the components (along the same axis) of the stator and 
the rotor currents 

Mq iμq is the magnetising flux generated, along the q-axis, by 
the components (along the same axis) of the stator and 
the rotor currents 

Mdq iμd is the coupling magnetising flux generated, along the 
q-axis, by the components (along the same axis) of the 
stator and the rotor currents 

Mdq iμq is the coupling magnetising flux generated, along the 
d-axis, by the components (along the same axis) of the 
stator and the rotor currents 

φd0, φq0 are additional terms whose values depend on the 
inductive parameters. 

It is worth noticing that the coefficients Md, Mq and Mdq are 
not uniquely defined. A judicious definition, suggested in 
Garrido et al. (1988), consists in choosing them so that, 
when differentiating (13) and (14) with respect to iμd and iμq, 
one gets: 

   ;         ; 

     

def defd q
d q

d q

def d q
dq

q d

M M
i i

M
i i

μ μ

μ μ

μ μ

μ μ

φ φ

φ φ

∂ ∂
= =

∂ ∂

∂ ∂
= =

∂ ∂

 (15) 

It follows from (13) and (14) that the functions 0 0and d qφ φ  

must undergo the following differential equations: 

0

0

  

  

dqd d
d q

d d d

q q dq
q d

d q q

MM
i i

i i i

M M
i i

i i i

μ μ
μ μ μ

μ μ
μ μ μ

φ

φ

∂∂ ∂
= − −

∂ ∂ ∂

∂ ∂ ∂
= − −

∂ ∂ ∂

 (16a) 

0

0

  

and

  

dqd d
d q

q q q

q q dq
q d

d d d

MM
i i

i i i

M M
i i

i i i

μ μ
μ μ μ

μ μ
μ μ μ

φ

φ

∂∂ ∂
= − −

∂ ∂ ∂

∂ ∂ ∂
= − −

∂ ∂ ∂

 (16b) 

On the other hand, substituting (13) to (14) in (8) to (11) 
leads to the following expressions for the (d, q) flux 
coordinates: 

( )
( )

0

0

0

0

sd s sd d d dq q d

sq s sq q q dq d q

rd r rd d d dq q d

rq r rq q q dq d q

l i M i M i

l i M i M i

l i k M i M i

l i k M i M i

μ μ

μ μ

μ μ

μ μ

φ φ

φ φ

φ φ

φ φ

= + + +

= + + +

= + + +

= + + +

 (17) 
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4 Relation between the induction coefficients and 
the static magnetisation parameter 

4.1 Definition of static magnetisation parameter 

The non-linear feature of the machine magnetic circuit is 
entirely accounted for through the magnetic characteristic 
Φμ = λ(Iμ) (Subsection 2.1). As, the instantaneous quantities 
φμ and iμ are synchronous, one has the relation: 

( )I
i

I
μ

μ μ
μ

λ
φ =  (18) 

The forthcoming development involves the static 
magnetising parameter m, see [5]: 

def( )
    h( )

I
m I

I I
μ μ

μ
μ μ

λΦ
= = =  (19) 

In view of (18), the (d, q)-components of the magnetising 
flux can be expressed as follows: 

,d d q qmi miμ μ μ μφ φ= =  (20) 

Then, the expressions (8)–(11) of the stator and rotor flux 
become: 

,

,
sd s sd d sq s sq q

rd r rd d rq r rq q

l i mi l i mi

l i k mi l i k mi
μ μ

μ μ

φ φ

φ φ

= + = +

= + = +
 (21) 

More generally, it is shown in subsequent sections, that all 
machine parameters, including induction coefficients, can 
be expressed as a function of m. But first, let us rewrite m as 
a function of the machine state variables. Indeed from (19) 
and (17), one gets: 

( )
( ) ( )
( ) ( )

2 2

1 2 2

22

221
  

d q

d q

sd s sd sq s sq

sd s sd sq s sq

m

l i l i

l i l i

μ μ

μ μ

φ φ

λ φ φ

φ φ

λ φ φ

−

−

+
=

+

− + −
=

⎛ ⎞
− + −⎜ ⎟

⎝ ⎠

 (22) 

4.2 Analytical expressions of induction coefficients 

The non-linearity of the magnetic characteristic implies that 
the induction parameters Md, Mq and Mdq are varying with 
the state variables. As the model involves such parameters, 
these need to be computed online. This makes it necessary 
to explicitly express such parameters in terms of the 
machine state variables. One has from (15) and (20): 

2
d

d d
d

im dmM m i m
i dI I

μ
μ

μ μ μ

∂
= + = +

∂
 (23) 

2

,q d q
q dq

i i idm dmM m M
dI I dI I

μ μ μ

μ μ μ μ
= + =  (24) 

using the fact that 2 2 2
d qI i iμ μ μ= + . Now, let us build up 

mathematical expressions that explicitly link the induction 
coefficients Md, Mq and Mdq to the state variables. Equations 
(23) to (24) show that this objective can be reached by 
expressing m and dm /dIμ in terms of the machine state 
variables (measured or observed). First, recall that a set of 
experimental points (Iμ,Φμ) = [Iμ, λ(Iμ)] is available. A set of 
experimental couples [Iμ, h(Iμ)] can thus be readily obtained, 
where (.)h  is as in (19). The experimental couples can be 
used to get a smooth polynomial approximation of the 
function (.)h . The obtained approximation for the 
considered machine, denoted Q(.), is represented by  
Figure 3. Notice also that the function Q(.) is time-derivable 
and bounded away from zero. 

On the other hand, as expressions (23) to (24) involve 
the derivative dm /dIμ, it also has to be approximated by a 
polynomial, denoted R(Iμ). The obtained function R(Iμ) is 
shown in Figure 4. The approximations obtained so far are 
summarised in Table 2 and will now be based upon to get 
expressions that explicitly link the induction coefficients to 
the state variables. To this end, it follows from (19) and (22) 
that: 

2 2( ) ( )sd s sd sq s sql i l iμ φ φΦ = − + −  (25) 

( )2 2( ) ( )inv sd s sd sq s sqI P l i l iμ φ φ= − + −  (26) 

Therefore, combining equations (23)–(24) with (21) leads to 
the following expressions: 

2

2
( )

( ) ( )
( )

sd s sd
d

l i
M Q I R I

I Q Iμ μ
μ μ

φ −
= +  (27) 

2

2

( )
( ) ( )

( )
sq s sq

q
l i

M Q I R I
I Q Iμ μ
μ μ

φ −
= +  (28) 

2

( )( )
( )

( )
sd s sd sq s sq

dq
l i l i

M R I
I Q Iμ
μ μ

φ φ− −
=  (29) 

Figure 3 Experimental couples (Iμ, m) (crosses) and spline 
interpolation Q(Iμ) (solid), unities: Iμ (A), m (Wb/A) 
(see online version for colours) 
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Figure 4 Experimental couples Iμ, dm / dlμ (crosses), spline 
interpolation R(Iμ) (solid), unities: Iμ (A), dm / dlμ 
(Wb/A2) (see online version for colours) 
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5 Induction machine model development 
accounting for magnetic saturation feature 

5.1 Rotor flux equations 

From (3) one readily gets that: 

rd
r rd r rq

d
R i

dt
φ

ω φ= − +  (30) 

Since ird is not a state variable, it should be removed from 
the above equation. To this end, one obtains from (21) and 
(12) that: 

2
rd sd

rd
r

k mi
i

l k m
φ −

=
+

 (31) 

which together with (30), yields: 

1 2
rd

rd sd r rq
d

g g i
dt
φ

φ ω φ= − + +  (32) 

with 1 2
r

r

R
g

l k m
=

+
 and 2 2

r

r

R km
g

l k m
=

+
. This is the first 

state equation. To obtain the second one, let (4) be rewritten 
as follows: 

.rq
r rq r rd

d
R i

dt
φ

ω φ= − −  (33) 

Since irq is not a state variable it should be removed from 
the above equation. To this end, one gets from (21) and (12) 
that: 

2
rq sq

rq
r

kmi
i

l k m

φ −
=

+
 (34) 

which, together with (33), yields: 

1 2
rq

rq sd r rd
d

g g i
dt
φ

φ ω φ= − + −  (35) 

5.2 Stator current equations 

These are derived from equations (1) to (2) which are 
rewritten here for convenience: 

.sd s sd sd s sq
dV R i
dt
φ ω φ= + −  (36) 

.sq s sq sq s sd
dV R i
dt
φ ω φ= + +  (37) 

As φsd and φsq are not state variables, they should be 
removed from the above equations. To this end, one gets 
from equations (21) that: 

1 ( )sd s sd rd r rdkl i l iφ φ= + −  (38) 

1 ( )sq s sq rq r rqkl i l iφ φ= + −  (39) 

Substituting (38) to (39) in (36) to (37), and using (31) and 
(34), one gets: 

2 2

1

      
( )

sd rd rdr
sd s sd s

sr
s s sq rq

r r

di d dil
V R i l

dt k dt k dt
ml m

l i
l k m k l k m

φ

ω
ω φ

= + + −

⎛ ⎞
− + −⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (40) 

2 2

1.

      
( )

sq rq rqr
sq s sq s

sr
s s sd rd

r r

di d dil
V R i l

dt k dt k dt
ml m

l i
l k m k l k m

φ

ω
ω φ

= + + −

⎛ ⎞
+ + +⎜ ⎟⎜ ⎟+ +⎝ ⎠

 (41) 

In this expression, dird / dt and dirq / dt must be expressed in 
terms of the state variables. To this end, time-derivation of 
the rotor flux equations (17) gives, using (16): 

2

2

2

2

( )

                 

( )

                 

rd rd sd
r d d

sq rq
dq dq

rq rq sq
r q q

sd rd
dq dq

di d di
l k M kM

dt dt dt
di di

kM k M
dt dt

di d di
l k M kM

dt dt dt
di di

kM k M
dt dt

φ

φ

+ = −

− −

+ = −

− −

 (42) 

Solving these equations with respect to dird / dt and dirq / dt 
yields, using (35) and (32): 

2
2

0 2

2
2

0 2

3 2

0 02 2

2 2 2
0

( )
 

          ( )  

( )
            

( )  

r r qrd
r dq rd

r

r dq
r r q rq

r

r dq r r q
sq sd

r r

d r q dq

R l k Mdi
a k M

dt l k m

R k M
a l k M
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with ( ) 12 2 4 2
0 ( )( )r q r q dqa l k M l k M k M

−
= + + − . Substituting 

(43) and (32) in (40), the expression of stator voltage along 
the d axis becomes: 

1 1 2 2 2

3 3 3

4 4 5 0 6

( ) ( )
     ( )

     ( )

sd sd r rd

r s rq

sqsd
s sq

v a a i a a a
a a a

didi
a a i a a a

dt dt

ω φ
ω ω φ

ω

′ ′′ ′= + − + +
′ ′′− − +

′+ − + +

 (44) 

where the meaning of the different parameters is given in 
Table 3. 

Operating similar transformations on the stator voltage 
along the q axis, one gets: 

( ) ( ) ( )

( )

1 1 4 4 2 2 2

3 3 3 5 6     

sq sq s sd r rq

sq sd
r s rd

v a b i a a i b a a

di di
a b a b a

dt dt

ω ω φ

ω ω φ

′ ′ ′′ ′= + + − + − +

′′+ − − + + +
(45) 

where the newly introduced coefficients are defined in 
Table 4. 
 
 

Table 3 Parameters newly introduced in equations (43) to (44) 
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Table 4 Parameters newly introduced in equation (45) 
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Table 5 Parameters newly introduced in (46) to (47) 

5
0 2

5 5 6

bq
a b a

=
−

, 5 4
1 0

6

b aq q
a
′

′ = , 2 0 4q q a′ ′=  5 4
1 0 1 1

6

b aq q a b
a

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
 

( )( )1
2 0 4 6 5 1 1q q a a b a a− ′= − − , 4 0 3q q a′′ ′′=  ( )1

3 0 2 2 6 5 3q q a b a b a−= − +  

( ) ( )( )1
4 0 0 3 6 0 5 1 0 2q q a a a a b a a a− ′′= − − −  ( ) 1

3 0 6 0 5 3q q a a b a−′ ′=  

( )1
4 0 6 6 3 5 2q q a a b b a−′ ′= − , 1

5 0 6 5q q a b−=  ( )1
2 6 4 5 1d a a a q−= −  

( )1
1 6 1 1 5 2d a a a a q− ′= − − , ( )3 0 6 0 5 3q q a a b a′′ ′′=  1

1 6 5 2d a a q−′ ′= −  

( )1
2 6 4 5 1d a a a q−′ ′ ′= − − , ( )1

3 6 2 5 4d a a a q−′ ′ ′= +  ( )1
3 6 2 2 5 4d a a a a q− ′′= + −  

1
3 6 5 4d a a q−′′ ′′= − , ( )1

4 6 3 5 3d a a a q−′ ′ ′= − −  ( )1
4 6 3 5 3d a a a q−= −  

( )1
4 6 3 5 3d a a a q−′′ ′′ ′′= − − , 1

6 0 5 6d q a a−=  ( )1
5 6 5 51d a a q−= +  

 
 
 

 
 
 



34 H. Ouadi et al.  

Now the state equations of the stator currents can readily be 
obtained by solving equations (44) and (45) with respect to 
disd /dt and disq /dt. Doing so, one gets: 

( ) ( )

( )
( )

1 1 2 2

3 3 3

4 4 4 5 0

 

         

         

sd
s sq s sd

r s rq

r s rd sd sq

di
q q i q q i

dt
q q q

q q q q v q v

ω ω

ω ω φ

ω ω φ

′ ′= − + − +

′ ′′− + +

′ ′′− + + − +

 (46) 

( ) ( )

( )
( )

1 1 2 2

3 3 3

4 4 4 5 6

         

         

sq
s sd s sq

r s rd

r s qd sd sq

di
d d i d d i

dt
d d d

d d d d v d v

ω ω

ω ω φ

ω ω φ

′ ′= − + − +

′ ′′− + +

′ ′′− + + + −

 (47) 

These equations introduce new coefficients whose meaning 
is described in Table 5. 

5.3 Mechanical equation 

The mechanical power Pm that induces the electromagnetic 
torque is given by (Leonhard, 2001): 

( ) ( )m sd sq sq sd s rd rq rq rd r
d dp i i i i
dt dt

φ φ θ φ φ θ= − + −  

Using the rotor currents expressions (31) and (34), in the 
flux equations (21) yields: 

( ) ( )2m rd sq rq sd s r
r

k m dp i i
dtl k m

φ φ θ θ= − −
+

 

which implies that the torque is given by: 

( )2e rd sq rq sd
r

pkmT i i
l k m

φ φ= −
+

. The rotor motion equation 

turns out to be: 

( ) ( )2
L

rd sq rq sd
r

Td p k m fi i
dt J JJ l k m

φ φΩ
= − − − Ω

+
 (48) 

This is the fifth (and last) state equation. AC machine model 
consists of equations (32), (35), (46), (47) and (48), which 
are, for convenience, rewritten in a more condensed form: 

( ) ( )X f X g X u= +  (49a) 

2 2( ) ,  
T

rd rqy h X φ φ⎡ ⎤= = Ω +⎣ ⎦  (49b) 

with 

, , , ,
T
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5 6
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 (49c) 
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 (49d) 

It is worth noting that, due to flux saturation, the model 
parameters ( ,  , ,  ,  ,  )i i i i i id d d q q q′ ′′ ′ ′′  are dependent on the 
static magnetisation parameter m. If the magnetic saturation 
is ignored, all previous parameters become constant. The 
proposed model then reduces to the standard model which is 
widely used in the control literature, e.g., Ortega et al. 
(1996) and Hu et al. (1996). 

6 Experimental validation 

The experimental part of the study was performed in the 
Automatic Control Dept of GIPSA-Lab, using a real 
induction motor whose features are summarised in  
Table 5. The motor control inputs are the stator voltage 
amplitude (Vs) and frequency (ωs). The values of these 
control signals are imposed through a DC/AC converter. 
The measured variables are the stator currents, electric 
power and the rotor speed. The whole system is controlled 
by a PC through a DSP Card. The first experimental task 
consists in obtaining a number of experimental points of the 
motor magnetic characteristic. These are used to construct 
the spline approximation Iμ = λ(Φμ) (Figure 1). Presently, 
one proceeds with the second task that consists in 
performing a practical validation of the newly developed 
model (49a–d) using real measurements. 

Table 5 Induction motor characteristics 

Power PN 7.5 KW 
Nominal speed ΩN 1,450 Tr / mn 
Nominal stator voltage Usn 380 V 
Nominal stator current Isn 16 A 
Nominal flux Φrn 1 Wb 
Nominal frequency fs 50 HZ 
Poles pair number p 20  

The experimental validation consists in comparing the 
responses of the model (49a–d) with experimental measures 
on the real motor excited by typical input voltages Vs for 
different values of ωs. The conditions of this experiment are 
chosen in such a way that the machine operates in the  
non-linear part of the magnetic characteristic (large values 
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of Φμ and Iμ). To this end, the applied input voltage Vs is a 
square signal switching between 220 and 265 V (Figure 5). 
The stator voltage frequency is ωs = 200(rd/s) and the load 
TL is large (TL = 30 Nm). The obtained current norm Is, for 
the real machine and the model, is shown in Figure 7. It is 
clearly seen that, again, the model is sufficiently accurate in 
representing the real machine. The corresponding static 
induction parameter m is represented by Figure 8. The 
initial and final values of m are very different (relative 
variation 60%). Consequently, the proposed model cannot 
reduce, in these conditions, to the usual standard model. 

Figure 5 Second experiment: the stator voltage amplitude Vs (V) 
(see online version for colours) 
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Figure 6 Second experiment: flux amplitude Φr (Wb)  
(see online version for colours) 
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Figure 7 Second experiment: stator current norm Is(A)  
(see online version for colours) 
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Figure 8 Second experiment: static induction parameter m  
(in Wb/A) (see online version for colours) 
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7 Conclusions 

In this paper, a new model (49a–d) that accounts for 
magnetic saturation has been developed for (uniform  
air-gap) induction motors. Its practical validation has been 
performed on a 7.5 kW induction motor. Different 
experiments have proved that the new model is well 
representative of the true machine. 
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