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This paper concerns a linear study of the convective parametric instability in the case of a
Newtonian fluid confined in a Hele-Shaw cell and submitted to a vertical periodic motion. The
gradient of temperature, applied to the fluid layer, is either in the same direction that gravity or in
the opposite one. An asymptotic analysis shows that the Hele-Shaw approximation leads to two
linear formulations depending on the order of magnitude of the Prandtl number. For these two
asymptotic cases, the convective threshold is determined. It turns out that in the Hele-Shaw
geometrical configuration, parametric oscillations have no influence on the criterion of stability
when the Prandtl number is in the order of the unity or very superior to the unity. However, when
the Prandtl number is small than unity, the parametric oscillations can affect the convective
instability threshold. ©2000 American Institute of Physids$S1070-663(00)00302-0

I. INTRODUCTION Gresho and Sani results at the convective threshold. Re-
cently, Cleveret al* have investigated the effects of gravi-
Consider a horizontal layer of a Newtonian fluid submit- tational modulation on the bidimensional convective thresh-
ted to a gradient of temperatul€T parallel to the gravita- old and constructed nonlinear solutions via Galerkin method.
tional acceleratiom. If the directions ofV T andg coincide,  They have also treated the tridimensional oscillatory convec-
the Rayleigh number is positive and then the correspondingon under gravity modulation.
configuration is an unstable equilibrium: Beyond a critical ~ Without being exhaustive, we quote other works on the
value of the Rayleigh number, a convective flow is estabgravitational modulation. Wadih and Rdukave considered
lished in a cellular structural form. In the case whEB has  the case of a fluid occupying a cylindrical cavity of infinite
an opposite direction that the Rayleigh number is negative, length and submitted to a negative gradient of temperature
and the corresponding configuration is a stable equilibriummaintained in the upward direction. They have also studied
This last configuration may be destabilized by a gravitythe effect of the gravitational modulation on the convective
modulation which can be realized by oscillating vertically threshold. Braveman and Oronhave carried out an
the fluid layer and its frontiers. Gresho and Sahave analytical-numerical study of stability in the case of a fluid
treated the case of a fluid layer confined between two rigidayer performing high-frequency oscillations with vertical
horizontal boundaries. They have studied the influence of thand horizontal components. Using an averaging method, they
gravitational modulation on the convective threshold of thenave shown that when the boundary conditions are not sym-
stable and unstable equilibrium configurations. By means ofnetric, the instability of the equilibrium is oscillatory. These
a Galerkin method truncated to the first order, Gresho anduthors have completed this study by a weakly nonlinear
Sant have reduced the governing linear system, corresponcanalysis where an amplitude equation has been derived and
ing to the bidimensional perturbations with respect to the resgtudied analytically and numericalffy.
state, to the Mathieu equation. The stability analysis has been In contrast to the gravitational modulation, other works
carried out qualitatively by exploiting the “Mathieu stability have been devoted to the modulation of the temperature im-
charts.” Similar treatment on the topic was reviewed in de-posed on the frontier. Veneziamas considered the case
tails in Gershuni and ZhukovitsKii.Later, Biringen and where the vertical gradient of temperature, imposed to the
Peltie? have extended the linear bidimensional problem offluid layer, possesses a stationary component together with a
Gresho and Sani to a nonlinear tridimensional one. In thisime-periodically one having small amplitude. Performing a
work, they have confirmed the bidimensional character ofinear stability analysis in the case of free—free horizontal
boundaries, he has shown that the modulation of the frontier

3 Author to whom correspondence should be addressed (883 83 59 55 temperature ma%OStab”ize or deStab_”iZ'e the equ”ibrium
51. state. Roppcet al.™ have completed this linear study by a
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4 designate, respectively, the displacement amplitude and the
. L dimensional angular frequency of the oscillatory motikis
e n b sinfat) 2 the unit vector upward. Therefore, the fluid layer is submit-
/ ted to two volumic forces: The gravitational force figid
gi / 7 and the oscillatory force one pbw? sin(wt)k. The equilib-
/ 7 rium of the fluid layer corresponds to a rest state with a
1 e conductive regime. Under these assumptions, the linear sys-
, tem of the governing equations, corresponding to the pertur-
p bation of the equilibrium state, is given by the following
L7 M Navier—Stokes equations in the Boussinesq approximation

divV=0, (1

oV
P ot

k“/ X cording to the law of displacemehtsin(wt)k, whereb andw
T2

’ Ve

FIG. 1. Scheme arrangement of Hele-Shaw cell.

=—gradP+ pvAV+pBT[g+bw?sin(wt)]k, (2)

weakly nonlinear analysis. A similar problem to the one by T T.—T
Veneziad has been considered previously by Gershuniand 2~ _ ‘1 '2
Zhukhovitski! taking into account that fluctuations of the at |

temperature obey a rectangular law. This probléme—free  \herep, 8, v, and« designate, respectively, the density, the

horizontal boundarigshas been studied by other authors. Forcoefficient of thermal dilatation, the kinematic viscosity, and

instance, Rosenblat and HerBérthave provided an the thermal diffusivity of the fluid.

asymptotic solution in the case of low modulation frequency  Tq introduce a perturbation parameter involving only the

with modulation amplitude not Sma”, Yih andlﬁihave used aspect ratio of the celk, we perform a dimensional ana|ysis

a Galerkin method to investigate the stability in the caseyy means of an appropriate choice of scales used in convec-

where the gradient of temperature is symmetrical. tion problems in Hele-Shaw céil:*® Thus, the time is scaled
The purpose of this work is to analyze the influence ofby 1%/, the coordinatesxy,z) are scaled byl(e,l), the

the gravitational modulation on the instability threshold in velocity field V(u,v,w) is scaled by k/1, ex/I%, «/1), and

the case of a Hele-Shaw geometrical configuration. In thighe pressure and temperature are, respectively, scaled by

configuration, a viscous fluid, in a narrow slot between ver-,y ,/e? and (T, —T,). Hence, the linear system of Eq4)—
tical parallel plates, is submitted to a constant gradient of3) js written as

temperature either in the same direction thair in the op-
i du oJv ow

posite one. 4= (4)
The analogy between motion in Hele-Shaw cell and mo- dx dy dz '

tion in porous medium, for weak Rayleigh numbers, has fre-

w+ kAT, (3

quently been used to simulate porous convectot® This 2 Pr 1M 9P +e2A,u+ a_l;, (5)

analogy has served especially to detect experimentally the at 28 ay

critical Rayleigh number corresponding to the onset of con- N ap 2,

vection. e Pr lﬁ iy + e*A,v+ EZF, (6)
In the present paper, a dimensional and asymptotic

analysis allow us to distinguish between two linear formula- b OW p ., W

tions. Each one of these formulations depends on the order of € Pr ot oz + €AW+ a_yz

magnitude of the Prandtl number. The first formulation cor-

responds to PrO(1) or Pe>1 while the second one corre- +R 1+ asin(Qy]T, )

sponds to Pr O(€?), wheree designates the aspect ratio of 2T

the cell. Therefore, we determine the criterion of stability for EZW = e’W+ €?A,T+ 2 )

these two asymptotic cases.
whereA,= g%/ 9x?+ 9%/ 922, Ra= BgAT€El /v k is the gravi-
Il. FORMULATION tational Rayleigh number of the celll = wl?/ « is a nondi-
mensional frequency, and=bw?/g represents the ampli-
tude’s ratio of the oscillatory motion acceleration and the
gravity one.
Moreover, on the vertical walls, the boundary conditions

Consider a Newtonian fluid confined in a horizontal
Hele-Shaw cell of infinite extent in the direction (see Fig.
1). Denote byl the height of the celle the distance between

) o< ) )
the vertical planes and= e/l <1 the aspect ratio of the cell; are:V=0 anddT/ay—0 aty=+ 1. Note that the boundary

the valuesyy = *e/2 andz=0, I correspond to the boundaries conditions on the horizontal plates will be discussed below
of the cell. We assume that the fluid confined in the cell is P ’

bou_nded vertically by two thermally msu_latlng walls and Il ASYMPTOTIC STUDY AND STABILITY
horizontally by two perfect heat conducting plates having

respectively constant temperatufge and T,. Suppose that It is obvious that in the Hele-Shaw approximation, the
the Hele-Shaw cell is submitted to an oscillatory motion ac-order of magnitude of the Prandtl number Pr in the system of
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Egs. (4)—(8) must be estimated to be able to drop terms oflocity field. Using the above assumptions, syste@)s-(11)
the ordere?. In this situation, two different formulations and(13) is reduced to the differential equation
depending on the order of magnitude of the Prandtl number

can be distinguished. f+ 1—2[R0—Ra(1+ asin(Qt))]f=0, (17)

A. First formulation Pr =0O(1) or Pr>1 where h=N/(A+1), \=q2/ 72 and Ry=1272(\ + 1)¥\.
In this formulation, a first approximation is obtained R, is the Rayleigh number corresponding to the marginal

from the system of Eqs4)—(8) by settinge?=0. Remark  stability of the unmodulate cas&The solution of Eq(17) is

that in this situation, the termiV/dt disappears. Let us de- given by

note byu,, v, Wy, Py, andT, the solution of such ap-

proximation. From Eq(6), the pressure is independentyof

Also, from Eq. (8) and using the adiabatic condition, the \ynere f_is an arbitrary constant depending on the initial
temperaturdl , is also independent of. Thus, system$4)—

f(t)=f o~ (M12[(Ro—Ralt+(aRal)cos O] (18)

conditions.
(8) become If the fluid layer is heated from belo.e., Ra>0), we
A, Vg W, can see from Eq(18) that the stability criterion is RaR, .
X W 97 =0, (9)  This criterion is the same that the one corresponding to the
unmodulate case: Ra&48x2 andq.= 7.'° Nevertheless, at
Uy 9P the onset of convection, the amplitudes of temperature and
Tyf: ox (10 velocity field are periodic and have the same frequency that
the parametric excitation. These amplitudes are given by
W, P, _ .
a_yf:E_ R 1+ a sin(Qt)]T,. (17 f(t)=f,e 27 Fri2cosy (19)
Integrating Eqs(10) and(11), we obtainu, andw, . Substi- g(t) = — 1272f [ 1+ FrQ2 sin(Qt)Je 27 Fro coson)
tuting u, andw, into the continuity Eq(9) and integrating, (20

V, is determined. The solution, which satisfies the bound-
ary conditionv,=0 aty=*3 is v,=0.

Clearly, at first order €2=0), Eqgs.(9)—(11) cannot be
coupled to the energy equati¢kq. (8)]. The situation cor-
responds to a pseudo-singular perturbation. Therefore, th(e
energy equatiofEq. (8)] is exploited at the ordee?® by €.

where Fr= aQ) ~2=b«?/gl* represents a sort of Froude num-
ber {=[(«/1)?/gl](b/)}. In this case, the parametric exci-
tation has neither a stabilizing effect nor a destabilizing one.
On the other hand, if the fluid layer is heated from above
, Ra<0), the rest state of the fluid layer cannot be desta-

. . bilized.
using the accurate expansion Hence, we can conclude in this first formulation that if
W=W,+ €Wy, (129 the fluid has a Prandtl numberO(1) or Pe>1, the oscil-
) lations of the cell cannot generate convective parametric in-
T=To+eT,. (12 stabilities. The physical reason for that is related to the large
of order €2, one obtains inertial effects. Quite the same situation takes place in the
5 case of a porous medium when the Darcy law is assumed for
aT T i
,9_::W0+A2T0+ > 1, (13 the resistance force.

. . ) . . » B. Second formulation Pr =0(€?
in which T, must also verify the adiabatic condition on the (€9

vertical walls:dT,/dy=0 aty= + 3. In contrast to the origi- In this formulation the termyV/4t remains in Eqs(5)
nal systems4)—(8), which needs six boundary conditions at and (7) after making the Hele-Shaw approximatior? (
the horizontal walls, the system to the first-ordej—(11)  =0). Hence, setting Pre? Pr* where Pt =O(1), systems

and (13), resulting from the Hele—Shaw approximation, re- (4)—(8) become

uires only the relevant four boundary conditions
d y y g Ny  IW,

Wo=T,=0 atz==+1 X Ty Tz O (21
To perform a stability analysis, we seek the solution of sys- au ops U
tems(9)—(11) and(13) in term of normal modes as pr—1 ato = a_x0+ WZ", (22)
Uo=mg(t)(y*— 3)sin( wz)e'®, (14
. LW, P 9P, .
Wo=iqg(t)(y?>— })coq 7z)e'9, (15) Pre— =—E+a—yz—+Ra[1+asm(Qt)]To,
T,=iqf(t)cog wz)e'd, (16) (23)
whereq denotes the wave numbdi(t) andg(t) designate, ar Ty (24)

i ; —— =W+ +—
respectively, the amplitudes of the temperature and the ve-  Jt Wot A2To ay?’
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wherep,=p,(X,z) andT,=Ty(X,2). As previously, the en-
ergy equatiofEq. (24)] is obtained at the ordes, in which
the termT, verifies the adiabatic condition on the vertical
walls: 9T, /dy=0 aty=+1. The solution of system&1)—
(24) can be sought in form§l4)—(16). Using Eq.(21) we
find thatv,=0 and then, after substituting expressigh4)—
(16) into Egs.(22)—(24) and averaging with respect 1o we
obtain the differential equation:

f+2pf+hPr[R,—Ra 1+ asin(Qt))]f=0,

where = 7?+0q%+12 Pf.

Now we shall to analyze the stability of the equilibrium
state using the amplitude equation of temperat@®. The
change of variableg(t)=e P'F(t) and 2r=Qt— 7/2 re-
duces Eq(25) to the well-known Mathieu equation

(25

F+[A—2Bcog27)]F=0, (26)
whereA andB are given by expressions
= W B=2 FrP#%Ra
and
Ry —RLPFOME 12
AG(N)Pr w2 (1+\)’
q? (27)
=

Following the Floquet Theory, the general solution of
Mathieu equatiodEq. (26)] is of the form

F(r)=e*"P(7), (28)

where u is the Floquet exponent and(7) is a periodic
function with periodw or 2. The solutions of Eq(25) are
then given by

f(t)=e PF(t)=e+2 PiG(1), (29)
whereG(t) is a periodic function with perioér or 27r. From
Eq. (29), we can see that the the criterion of stability is

759}

5 (30

<p.
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ones. First, consider the synchronous solutions of (E6).
Substitution of expressio(82) in Eq. (26) leads to the fol-
lowing linear system:

n=----2-1,01,2--,
(34)

where&,(n)=B/[(2n—iw)2—A]. For non vanishing solu-
tions, the determinant of the matrix in E@4) must vanish.
One obtains

éndn_1tant&pan+1=0,

A(ip)
&, 1 &€, 0 0 0 0
0 ¢, 1 &, 0 0 O
|- 0 0 & 1 & 0 0 -|=o
0 0 0 & 1 & O
0 0 & 1 &
(39

whereA(iu) is the Hill determinant. Equatio(85) may be
written ag®

Ch(,uqr)=1—2A(0)Sin2(ﬂ), 36)
where
& 1 & 0 0 0 0
0 & 1 & 0 0 0
A(0)= 0 0 & 1 & 0 O (37
00 0 & 1 & 0
00 0 0¢& 1 &

The determinani(0) is defined from Eq(35) for u=0 and
hence functions,(u) are actuallyé,(0). It should be no-
ticed that the advantage of the transformati®) is that
A(0) can be computed from recurrence relations between the

Hereafter, we focus our attention on the marginal stabilitydeterminants of orders differing by two at each step, starting

condition, corresponding to periodic solutions of periodr
21, given by

u)
- =P (31)
The solutions of Eq(26) can be expressed in the foftn
+ oo
F,TZE’U'TE aneZinT, (32)
+ o0
szzeurz anei(2n+1)r. (33)

The expression(32) corresponds to the synchronous solu-
tions having the same frequency that the parametric excita-

tion while expressiorn(33) corresponds to the subharmonic

with the mid-determinant

Ag=1, A=1-2&4¢,
Ap=(1-&16)2 = 260E1(1— £169), (383
Apnio=(1=&ni1éni2)Ani1—&nr1énso(l

—&niibni) At Erdn 1bniabn 1 (380)

Convergence of Eq.37) is rapid enough to produce data to
two or three decimals in a very short time.

Let us discuss the following cases. If the fluid layer is
heated from belowRa>0), then the constarm given by Eq.
(27) is negative. Consequently, E@6) becomes

J_A).

aw

(39

Ch(um)=1+ ZA(O)Sinhz( >
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Q Q
FIG. 2. Heated from below. Evolution of the critical Rayleigh number Ra FIG. 3. Heated from above. ReRy . Evolution of the critical Rayleigh
and wave numbeg, as a function of the nondimensional frequery number Ra and wave numbeq, as a function of the nondimensional fre-
guency().

If the fluid layer is heated from aboveRa<0), then the  corresponding to the onset of synchronous solutions, in-
constantA may be either positive foRy>Ra, or negative creases until a certain frequency is reached at which the on-
for Ry<Ra. We can use Eq36) or Eq. (39) depending of  set is in the form of subharmonic solutions. The crossover

the sign of the constark. frequency between the synchronous and subharmonic solu-
Similarly, for subharmonic Solutions, one obtains antionS, depending on the Froude number Fr and on the effec-
equivalent characteristic equation that £89) tive Prandtl number Pt is ;= 636. More precisely, fof)
—A <, values of subharmonic solutions are bigger than the
Ch(um)= —1+2A(0)Sinhz( ) (40 synchcronous ones; also, for>(,, values of synchronous

solutions are bigger than the subharmonic ones. In each case,
Note that both Eqe36) and(40) relate the effective Prandtl only the smallest value is significant. For the sake of clarifi-
number P¥, the Froude number Fr, the Rayleigh number Raation, we have plotted some data showing such intersection
the wave numbeq, the nondimensional frequendy, and  between the synchronous and subharmonic modes.
the Floquet exponent. In order to investigate the marginal As () increases further beyorld;, the critical Rayleigh
stability curves, these Eq&36) and(40) are solved numeri- number Ra corresponding to the onset of subharmonic so-
cally for fixed Prandtl and Froude numbers. We first deterdutions decreases to reach an asymptotic valug=R&35.
mine numerically the marginal stability curves for different The evolution of the wave numbey., as shown in Fig. 2,
values of the frequenc§, to obtain the corresponding criti- gives rise to a jump phenomenon when crossing the value
cal Rayleigh numbers Rand wave numberg.. To obtain ;. The wave number corresponding to synchronous solu-
marginal stability curve in the plane Ra gswe proceed as tions decreases froy.= 7 to .= 0.664, while the one cor-
follows. For a fixed(2 and a fixed wave numbey;, we first  responding to the subharmonic solutions increases figm
calculate the Floquet exponept using Eq.(31), and then =09.7 to infinity.
we determine the corresponding value of (Rarifying the In Fig. 3, we present the results corresponding to the
synchronous characteristic equatidy. (36)] or the subhar- case of a fluid layer heated from above for<RRy, Pr =1,
monic one Eq.(40). Hereafter, we plot the curves corre- and F=10 4. We can see that the zone of synchronous
sponding to the critical Rayleigh and wave numbers versusolutions is very small in contrast to subharmonic zone. In
the frequency). Each one of these critical curves, representdhe synchronous region, &stends to zero, the critical Ray-
the minimum of the two modes of solutiorisynchronous leigh number increases to high values, while the critical
and subharmonijcin term of the critical Rayleigh number. wave number increases wifh to reach the valug.=5.4 at
Indeed, the instability is caused by the smallest value of th€),=95. In the subharmonic region, the critical Rayleigh
critical Rayleigh number. Therefore, the critical curves con-number decreases to reach the asymptotic valye=R&57
sist of two regions, one corresponds to synchronous solutiorend the critical wave number increases from vajye 2.6 to
and the other is related to the subharmonic ones. reach the asymptotic valug.=11.7. As in the first case, a
Figure 2 illustrates the results of the case where the fluigump phenomenon of the wave number@t=95 can be
is heated from below and for values of effective Prandtlobserved.
number and Froude number*Rrl and Fe=10"4. Near In Fig. 4 we show, for different values of the Froude
0=0, the critical Rayleigh and wave numbers tend, respecaumber and for Pr=1, the evolution of the critical Rayleigh
tively, as expected, to the values of the unmodulate caseumber as a function of the frequency in the case where the
namely Ra=48x? andq.= 7.'° Furthermore, one can see fluid layer is heated from below. Note that the zone corre-
that if ) increases from zero, the critical Rayleigh number,sponding to the synchronous solutions narrows dramatically
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6000 N — S fore, this result verifies that of the first asymptotic case and

Rac 4535 | shows the transition between the two limiting cases.

° Fr=10°¢

5000 . Fr=5.510*

L IV. SUMMARY
- = - Fr=210*

4000

Fr=10* In this work, we have studied the influence of the gravi-

tational modulation on the instability threshold for a fluid

7 layer confined in a Hele-Shaw cell. The fluid layer is submit-

i ted to a constant gradient of temperature in the same direc-

. tion that gravity or in the opposite one. An appropriate

choice of the characteristic magnitudes related to the convec-

1000 )J ) e s tion proplems in. Hele.—ShaW cgll togther with an

prowy o0 ] asymptotic analysis provide two different linear formula-

0 O S B B tions. Each formulation depends on the magnitude order of

0 200 400 600 8o 1000 1200 the Prandtl number. We have shown that if the Prandtl num-
Q ber is in the order of the unity or very large than the unity,
parametric oscillations have no stabilizing or destabilizing

FIG. 4. Heated from below. Evolution of the critical Rayleigh numbeg Ra effect. In this formulation. we have the same criterion of

as a function of the nondimensional frequer@yfor different values of L . " .

Froude number. stability, in term of the critical Rayleigh number Rand
wave numben, that the one of the unmodulate case. Nev-
ertheless, at the onset of convection, the amplitudes of the

as the Froude number increases. In this zone, the parametijelocity field and temperature, given analytically, are peri-

excitation has always a stabilizing effect. The subharmonigdic and have the same frequency that the parametric oscil-
region widens as the Froude number increases. Here thations.

asymptotic values of the critical Rayleigh number decrease |n contrast to the first asymptotic formulation Pr

as the Froude number increases. We point out that in thissO(1) or Pe>1, the governing system of equations, corre-

region the parametric excitation may have a destabilizingsponding to the second formulation-P®(€?), is reduced to
effect for high frequencies and large Froude numbers relateghe Mathieu equation. More precisely, the damping effect of
to the amplitude of oscillations. For example, if=Ft03,  the vertical walls can be weakened and the convective para-
the asymptotic value of the critical Rayleigh number,. Ra metric instability can occur in liquids with weak Prandtl
=453, is less than the one corresponding to the unmodulaigumber as liquids metals. In the geometrical Hele-Shaw con-
case 4&°. Here, we have a destabilizing effect. figuration, the Mathieu equation is derived directly from the

Finally, Fig. 5 illustrates, for Fr 10~* and2=100, the  governing system by using normal modes and may be con-
dependence of the critical Rayleigh number, Ra the ef-  sidered as a good approximation to the second formulation.
fective Prandtl number Pr It is worth noting that for these Therefore, the Floquet theory can be applied to determine a
parameters only the synchronous solutions exist. For insimple criterion of stability. It should be noticed that for the
stance, ife=0.1, we have Pr1 for P*=100 and P»1 for  numerical determination of the stability criterion, we have
Pr>100. It can be seen from Fig. 5 that beyond the valugrerformed an alternative method to that by Gresho and*Sani.
Pr*=100, the critical Rayleigh number tends, as expected, tThe method developed in this work, consists in exploiting
the critical one of the unmodulate case,.R#87?. There- directly the Hill determinant.

In practice, the Hele-Shaw cells allow to realize a simu-
lation of flows in porous medium under certain
conditions??>?® Therefore, this linear study can serve as
model to investigate the influence of the gravitational modu-
lation on the threshold of convective instability in porous
medium.
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