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This paper concerns a linear study of the convective parametric instability in the case of a
Newtonian fluid confined in a Hele-Shaw cell and submitted to a vertical periodic motion. The
gradient of temperature, applied to the fluid layer, is either in the same direction that gravity or in
the opposite one. An asymptotic analysis shows that the Hele-Shaw approximation leads to two
linear formulations depending on the order of magnitude of the Prandtl number. For these two
asymptotic cases, the convective threshold is determined. It turns out that in the Hele-Shaw
geometrical configuration, parametric oscillations have no influence on the criterion of stability
when the Prandtl number is in the order of the unity or very superior to the unity. However, when
the Prandtl number is small than unity, the parametric oscillations can affect the convective
instability threshold. ©2000 American Institute of Physics.@S1070-6631~00!00302-0#

I. INTRODUCTION

Consider a horizontal layer of a Newtonian fluid submit-
ted to a gradient of temperature¹T parallel to the gravita-
tional accelerationg. If the directions of¹T andg coincide,
the Rayleigh number is positive and then the corresponding
configuration is an unstable equilibrium: Beyond a critical
value of the Rayleigh number, a convective flow is estab-
lished in a cellular structural form. In the case where¹T has
an opposite direction thatg, the Rayleigh number is negative,
and the corresponding configuration is a stable equilibrium.
This last configuration may be destabilized by a gravity
modulation which can be realized by oscillating vertically
the fluid layer and its frontiers. Gresho and Sani1 have
treated the case of a fluid layer confined between two rigid
horizontal boundaries. They have studied the influence of the
gravitational modulation on the convective threshold of the
stable and unstable equilibrium configurations. By means of
a Galerkin method truncated to the first order, Gresho and
Sani1 have reduced the governing linear system, correspond-
ing to the bidimensional perturbations with respect to the rest
state, to the Mathieu equation. The stability analysis has been
carried out qualitatively by exploiting the ‘‘Mathieu stability
charts.’’ Similar treatment on the topic was reviewed in de-
tails in Gershuni and Zhukovitskii.2 Later, Biringen and
Peltier3 have extended the linear bidimensional problem of
Gresho and Sani to a nonlinear tridimensional one. In this
work, they have confirmed the bidimensional character of

Gresho and Sani results at the convective threshold. Re-
cently, Cleveret al.4 have investigated the effects of gravi-
tational modulation on the bidimensional convective thresh-
old and constructed nonlinear solutions via Galerkin method.
They have also treated the tridimensional oscillatory convec-
tion under gravity modulation.5

Without being exhaustive, we quote other works on the
gravitational modulation. Wadih and Roux6 have considered
the case of a fluid occupying a cylindrical cavity of infinite
length and submitted to a negative gradient of temperature
maintained in the upward direction. They have also studied
the effect of the gravitational modulation on the convective
threshold. Braveman and Oron7 have carried out an
analytical-numerical study of stability in the case of a fluid
layer performing high-frequency oscillations with vertical
and horizontal components. Using an averaging method, they
have shown that when the boundary conditions are not sym-
metric, the instability of the equilibrium is oscillatory. These
authors have completed this study by a weakly nonlinear
analysis where an amplitude equation has been derived and
studied analytically and numerically.8

In contrast to the gravitational modulation, other works
have been devoted to the modulation of the temperature im-
posed on the frontier. Venezian9 has considered the case
where the vertical gradient of temperature, imposed to the
fluid layer, possesses a stationary component together with a
time-periodically one having small amplitude. Performing a
linear stability analysis in the case of free–free horizontal
boundaries, he has shown that the modulation of the frontier
temperature may stabilize or destabilize the equilibrium
state. Roppoet al.10 have completed this linear study by a
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weakly nonlinear analysis. A similar problem to the one by
Venezian9 has been considered previously by Gershuni and
Zhukhovitski11 taking into account that fluctuations of the
temperature obey a rectangular law. This problem~free–free
horizontal boundaries! has been studied by other authors. For
instance, Rosenblat and Herbert12 have provided an
asymptotic solution in the case of low modulation frequency
with modulation amplitude not small, Yih and Li13 have used
a Galerkin method to investigate the stability in the case
where the gradient of temperature is symmetrical.

The purpose of this work is to analyze the influence of
the gravitational modulation on the instability threshold in
the case of a Hele-Shaw geometrical configuration. In this
configuration, a viscous fluid, in a narrow slot between ver-
tical parallel plates, is submitted to a constant gradient of
temperature either in the same direction thatg or in the op-
posite one.

The analogy between motion in Hele-Shaw cell and mo-
tion in porous medium, for weak Rayleigh numbers, has fre-
quently been used to simulate porous convection.14–16 This
analogy has served especially to detect experimentally the
critical Rayleigh number corresponding to the onset of con-
vection.

In the present paper, a dimensional and asymptotic
analysis allow us to distinguish between two linear formula-
tions. Each one of these formulations depends on the order of
magnitude of the Prandtl number. The first formulation cor-
responds to Pr5O(1) or Pr@1 while the second one corre-
sponds to Pr5O(e2), wheree designates the aspect ratio of
the cell. Therefore, we determine the criterion of stability for
these two asymptotic cases.

II. FORMULATION

Consider a Newtonian fluid confined in a horizontal
Hele-Shaw cell of infinite extent in thex direction ~see Fig.
1!. Denote byl the height of the cell,e the distance between
the vertical planes ande5e/ l !1 the aspect ratio of the cell;
the valuesy56e/2 andz50, l correspond to the boundaries
of the cell. We assume that the fluid confined in the cell is
bounded vertically by two thermally insulating walls and
horizontally by two perfect heat conducting plates having
respectively constant temperatureT1 and T2 . Suppose that
the Hele-Shaw cell is submitted to an oscillatory motion ac-

cording to the law of displacementb sin(vt)k, whereb andv
designate, respectively, the displacement amplitude and the
dimensional angular frequency of the oscillatory motion;k is
the unit vector upward. Therefore, the fluid layer is submit-
ted to two volumic forces: The gravitational force fieldrg
and the oscillatory force one2rbv2 sin(vt)k. The equilib-
rium of the fluid layer corresponds to a rest state with a
conductive regime. Under these assumptions, the linear sys-
tem of the governing equations, corresponding to the pertur-
bation of the equilibrium state, is given by the following
Navier–Stokes equations in the Boussinesq approximation

div V50, ~1!

r
]V

]t
52gradP1rvDV1rbT@g1bv2 sin~vt !#k, ~2!

]T

]t
5

T12T2

l
w1kDT, ~3!

wherer, b, v, andk designate, respectively, the density, the
coefficient of thermal dilatation, the kinematic viscosity, and
the thermal diffusivity of the fluid.

To introduce a perturbation parameter involving only the
aspect ratio of the cell,e, we perform a dimensional analysis
by means of an appropriate choice of scales used in convec-
tion problems in Hele-Shaw cell.17,18Thus, the time is scaled
by l 2/k, the coordinates (x,y,z) are scaled by (l ,e,l ), the
velocity field V(u,v,w) is scaled by (k/ l , ek/ l 2, k/ l ), and
the pressure and temperature are, respectively, scaled by
rvk/e2 and (T12T2). Hence, the linear system of Eqs.~1!–
~3! is written as

]u

]x
1

]v
]y

1
]w

]z
50, ~4!

e2 Pr21
]u

]t
52

]p

]x
1e2D2u1

]2u

]y2 , ~5!

e4 Pr21
]v
]t

52
]p

]y
1e4D2v1e2

]2v
]y2 , ~6!

e2 Pr21
]w

]t
52

]p

]z
1e2D2w1

]2w

]y2

1Ra@11a sin~Vt !#T, ~7!

e2
]T

]t
5e2w1e2D2T1

]2T

]y2 , ~8!

whereD25]2/]x21]2/]z2, Ra5bgDTe2l /vk is the gravi-
tational Rayleigh number of the cell,V5v l 2/k is a nondi-
mensional frequency, anda5bv2/g represents the ampli-
tude’s ratio of the oscillatory motion acceleration and the
gravity one.

Moreover, on the vertical walls, the boundary conditions
are:V50 and]T/]y50 at y56 1

2. Note that the boundary
conditions on the horizontal plates will be discussed below.

III. ASYMPTOTIC STUDY AND STABILITY

It is obvious that in the Hele-Shaw approximation, the
order of magnitude of the Prandtl number Pr in the system of

FIG. 1. Scheme arrangement of Hele-Shaw cell.
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Eqs. ~4!–~8! must be estimated to be able to drop terms of
the ordere2. In this situation, two different formulations
depending on the order of magnitude of the Prandtl number
can be distinguished.

A. First formulation Pr 5O„1… or Prš1

In this formulation, a first approximation is obtained
from the system of Eqs.~4!–~8! by settinge250. Remark
that in this situation, the term]V/]t disappears. Let us de-
note byuo , vo , wo , po , and To the solution of such ap-
proximation. From Eq.~6!, the pressure is independent ofy.
Also, from Eq. ~8! and using the adiabatic condition, the
temperatureTo is also independent ofy. Thus, systems~4!–
~8! become

]uo

]x
1

]vo

]y
1

]wo

]z
50, ~9!

]2uo

]y2 5
]po

]x
, ~10!

]2wo

]y2 5
]po

]z
2Ra@11a sin~Vt !#To . ~11!

Integrating Eqs.~10! and~11!, we obtainuo andwo . Substi-
tuting uo andwo into the continuity Eq.~9! and integrating,
vo is determined. The solutionvo which satisfies the bound-
ary conditionvo50 at y56 1

2 is vo50.
Clearly, at first order (e250), Eqs.~9!–~11! cannot be

coupled to the energy equation@Eq. ~8!#. The situation cor-
responds to a pseudo-singular perturbation. Therefore, the
energy equation@Eq. ~8!# is exploited at the ordere2 by
using the accurate expansion

w5wo1e2w1 , ~12a!

T5To1e2T1 . ~12b!

Inserting expression~12! into Eq.~8! and keeping only terms
of ordere2, one obtains

]To

]t
5wo1D2To1

]2T1

]y2 , ~13!

in which T1 must also verify the adiabatic condition on the
vertical walls:]T1 /]y50 aty56 1

2. In contrast to the origi-
nal systems~4!–~8!, which needs six boundary conditions at
the horizontal walls, the system to the first-order~9!–~11!
and ~13!, resulting from the Hele–Shaw approximation, re-
quires only the relevant four boundary conditions

wo5To50 at z56 1
2.

To perform a stability analysis, we seek the solution of sys-
tems~9!–~11! and ~13! in term of normal modes as

uo5pg~ t !~y22 1
4!sin~pz!eiqx, ~14!

wo5 iqg~ t !~y22 1
4!cos~pz!eiqx, ~15!

To5 iq f ~ t !cos~pz!eiqx, ~16!

whereq denotes the wave number,f (t) andg(t) designate,
respectively, the amplitudes of the temperature and the ve-

locity field. Using the above assumptions, systems~9!–~11!
and ~13! is reduced to the differential equation

ḟ 1
h

12
@Ro2Ra~11a sin~Vt !!# f 50, ~17!

where h5l/(l11), l5q2/p2 and Ro512p2(l11)2/l;
Ro is the Rayleigh number corresponding to the marginal
stability of the unmodulate case.19 The solution of Eq.~17! is
given by

f ~ t !5 f oe2~h/12!@~Ro2Ra!t1~aRa/V!cos~Vt !#, ~18!

where f o is an arbitrary constant depending on the initial
conditions.

If the fluid layer is heated from below~i.e., Ra.0!, we
can see from Eq.~18! that the stability criterion is Ra<Ro .
This criterion is the same that the one corresponding to the
unmodulate case: Rac548p2 andqc5p.19 Nevertheless, at
the onset of convection, the amplitudes of temperature and
velocity field are periodic and have the same frequency that
the parametric excitation. These amplitudes are given by

f ~ t !5 f oe22p2 Fr V cos~Vt !, ~19!

g~ t !5212p2f o@11FrV2 sin~Vt !#e22p2 Fr V cos~Vt !,
~20!

where Fr5aV225bk2/gl4 represents a sort of Froude num-
ber $5@(k/ l )2/gl#(b/ l )%. In this case, the parametric exci-
tation has neither a stabilizing effect nor a destabilizing one.

On the other hand, if the fluid layer is heated from above
~i.e., Ra,0!, the rest state of the fluid layer cannot be desta-
bilized.

Hence, we can conclude in this first formulation that if
the fluid has a Prandtl number Pr5O(1) or Pr@1, the oscil-
lations of the cell cannot generate convective parametric in-
stabilities. The physical reason for that is related to the large
friction at the vertical walls which leads to the suppression of
inertial effects. Quite the same situation takes place in the
case of a porous medium when the Darcy law is assumed for
the resistance force.

B. Second formulation Pr 50„e2
…

In this formulation the term]V/]t remains in Eqs.~5!
and ~7! after making the Hele-Shaw approximation (e2

50). Hence, setting Pr5e2 Pr* where Pr* 5O(1), systems
~4!–~8! become

]uo

]x
1

]vo

]y
1

]wo

]z
50, ~21!

Pr* 21
]uo

]t
52

]po

]x
1

]2uo

]y2 , ~22!

Pr* 21
]wo

]t
52

]po

]z
1

]2wo

]y2 1Ra@11a sin~Vt !#To ,

~23!

]To

]t
5wo1D2To1

]2T1

]y2 , ~24!
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wherepo5po(x,z) andTo5To(x,z). As previously, the en-
ergy equation@Eq. ~24!# is obtained at the ordere2, in which
the termT1 verifies the adiabatic condition on the vertical
walls: ]T1 /]y50 at y56 1

2. The solution of systems~21!–
~24! can be sought in forms~14!–~16!. Using Eq.~21! we
find thatvo50 and then, after substituting expressions~14!–
~16! into Eqs.~22!–~24! and averaging with respect toy, we
obtain the differential equation:

f̈ 12p ḟ1h Pr* @Ro2Ra~11a sin~Vt !!# f 50, ~25!

where 2p5p21q2112 Pr* .
Now we shall to analyze the stability of the equilibrium

state using the amplitude equation of temperature~25!. The
change of variablesf (t)5e2ptF(t) and 2t5Vt2p/2 re-
duces Eq.~25! to the well-known Mathieu equation

F̈1@A22B cos~2t!#F50, ~26!

whereA andB are given by expressions

A5
4l Pr* ~RN2Ra!

~11l!V2 , B52 Fr Pr*
l

11l
Ra

and

RN52Ro

@12Pr* G~l!#2

4G~l!Pr*
, G~l!5

12

p2~11l!
,

~27!

l5
q2

p2 .

Following the Floquet Theory, the general solution of
Mathieu equation@Eq. ~26!# is of the form

F~t!5emtP~t!, ~28!

where m is the Floquet exponent andP(t) is a periodic
function with periodp or 2p. The solutions of Eq.~25! are
then given by

f ~ t !5e2ptF~ t !5e~mV/22p!tG~ t !, ~29!

whereG(t) is a periodic function with periodp or 2p. From
Eq. ~29!, we can see that the the criterion of stability is

mV

2
<p. ~30!

Hereafter, we focus our attention on the marginal stability
condition, corresponding to periodic solutions of periodp or
2p, given by

mV

2
5p. ~31!

The solutions of Eq.~26! can be expressed in the form20

Fp5emt(
2`

1`

ane2int, ~32!

F2p5emt(
2`

1`

anei ~2n11!t. ~33!

The expression~32! corresponds to the synchronous solu-
tions having the same frequency that the parametric excita-
tion while expression~33! corresponds to the subharmonic

ones. First, consider the synchronous solutions of Eq.~26!.
Substitution of expression~32! in Eq. ~26! leads to the fol-
lowing linear system:

jnan211an1jnan1150, n5¯22,21,0,1,2̄ ,
~34!

wherejn(m)5B/@(2n2 im)22A#. For non vanishing solu-
tions, the determinant of the matrix in Eq.~34! must vanish.
One obtains

D~ im!

5U • • • • • • • • •

• j22 1 j22 0 0 0 0 •

• 0 j21 1 j21 0 0 0 •

• 0 0 j0 1 j0 0 0 •

• 0 0 0 j1 1 j1 0 •

• 0 0 0 0 j2 1 j2 •

• • • • • • • • •

U50,

~35!

whereD( im) is the Hill determinant. Equation~35! may be
written as20

Ch~mp!5122D~0!Sin2S pAA

2 D , ~36!

where

D~0!5U • • • • • • • • •

• j2 1 j2 0 0 0 0 •

• 0 j1 1 j1 0 0 0 •

• 0 0 j0 1 j0 0 0 •

• 0 0 0 j1 1 j1 0 •

• 0 0 0 0 j2 1 j2 •

• • • • • • • • •

U . ~37!

The determinantD~0! is defined from Eq.~35! for m50 and
hence functionsjn(m) are actuallyjn(0). It should be no-
ticed that the advantage of the transformation~36! is that
D~0! can be computed from recurrence relations between the
determinants of orders differing by two at each step, starting
with the mid-determinant21

D051, D15122j0j1 ,

D25~12j1j2!222j0j1~12j1j2!, ~38a!

Dn125~12jn11jn12!Dn112jn11jn12~1

2jn11jn12!Dn1jn
2jn11

3 jn12Dn21 . ~38b!

Convergence of Eq.~37! is rapid enough to produce data to
two or three decimals in a very short time.

Let us discuss the following cases. If the fluid layer is
heated from below~Ra.0!, then the constantA given by Eq.
~27! is negative. Consequently, Eq.~36! becomes

Ch~mp!5112D~0!Sinh2S pA2A

2 D . ~39!
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If the fluid layer is heated from above~Ra,0!, then the
constantA may be either positive forRN.Ra, or negative
for RN,Ra. We can use Eq.~36! or Eq. ~39! depending of
the sign of the constantA.

Similarly, for subharmonic solutions, one obtains an
equivalent characteristic equation that Eq.~39!

Ch~mp!52112D~0!Sinh2S pA2A

2 D . ~40!

Note that both Eqs.~36! and~40! relate the effective Prandtl
number Pr* , the Froude number Fr, the Rayleigh number Ra,
the wave numberq, the nondimensional frequencyV, and
the Floquet exponentm. In order to investigate the marginal
stability curves, these Eqs.~36! and ~40! are solved numeri-
cally for fixed Prandtl and Froude numbers. We first deter-
mine numerically the marginal stability curves for different
values of the frequencyV, to obtain the corresponding criti-
cal Rayleigh numbers Rac and wave numbersqc . To obtain
marginal stability curve in the plane Ra vsq, we proceed as
follows. For a fixedV and a fixed wave numberqi , we first
calculate the Floquet exponentm i using Eq.~31!, and then
we determine the corresponding value of (Ra)i verifying the
synchronous characteristic equation@Eq. ~36!# or the subhar-
monic one Eq.~40!. Hereafter, we plot the curves corre-
sponding to the critical Rayleigh and wave numbers versus
the frequencyV. Each one of these critical curves, represents
the minimum of the two modes of solutions~synchronous
and subharmonic! in term of the critical Rayleigh number.
Indeed, the instability is caused by the smallest value of the
critical Rayleigh number. Therefore, the critical curves con-
sist of two regions, one corresponds to synchronous solutions
and the other is related to the subharmonic ones.

Figure 2 illustrates the results of the case where the fluid
is heated from below and for values of effective Prandtl
number and Froude number Pr*51 and Fr51024. Near
V50, the critical Rayleigh and wave numbers tend, respec-
tively, as expected, to the values of the unmodulate case,
namely Rac548p2 andqc5p.19 Furthermore, one can see
that if V increases from zero, the critical Rayleigh number,

corresponding to the onset of synchronous solutions, in-
creases until a certain frequency is reached at which the on-
set is in the form of subharmonic solutions. The crossover
frequency between the synchronous and subharmonic solu-
tions, depending on the Froude number Fr and on the effec-
tive Prandtl number Pr* , is V t5636. More precisely, forV
,V t , values of subharmonic solutions are bigger than the
synchcronous ones; also, forV.V t , values of synchronous
solutions are bigger than the subharmonic ones. In each case,
only the smallest value is significant. For the sake of clarifi-
cation, we have plotted some data showing such intersection
between the synchronous and subharmonic modes.

As V increases further beyondV t , the critical Rayleigh
number Rac corresponding to the onset of subharmonic so-
lutions decreases to reach an asymptotic value Rac54535.
The evolution of the wave numberqc , as shown in Fig. 2,
gives rise to a jump phenomenon when crossing the value
V t . The wave number corresponding to synchronous solu-
tions decreases fromqc5p to qc50.664, while the one cor-
responding to the subharmonic solutions increases fromqc

59.7 to infinity.
In Fig. 3, we present the results corresponding to the

case of a fluid layer heated from above for Ra,RN , Pr*51,
and Fr51024. We can see that the zone of synchronous
solutions is very small in contrast to subharmonic zone. In
the synchronous region, asV tends to zero, the critical Ray-
leigh number increases to high values, while the critical
wave number increases withV to reach the valueqc55.4 at
V t595. In the subharmonic region, the critical Rayleigh
number decreases to reach the asymptotic value Rac54857
and the critical wave number increases from valueqc52.6 to
reach the asymptotic valueqc511.7. As in the first case, a
jump phenomenon of the wave number atV t595 can be
observed.

In Fig. 4 we show, for different values of the Froude
number and for Pr*51, the evolution of the critical Rayleigh
number as a function of the frequency in the case where the
fluid layer is heated from below. Note that the zone corre-
sponding to the synchronous solutions narrows dramatically

FIG. 2. Heated from below. Evolution of the critical Rayleigh number Rac

and wave numberqc as a function of the nondimensional frequencyV.

FIG. 3. Heated from above. Ra,RN . Evolution of the critical Rayleigh
number Rac and wave numberqc as a function of the nondimensional fre-
quencyV.
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as the Froude number increases. In this zone, the parametric
excitation has always a stabilizing effect. The subharmonic
region widens as the Froude number increases. Here the
asymptotic values of the critical Rayleigh number decrease
as the Froude number increases. We point out that in this
region the parametric excitation may have a destabilizing
effect for high frequencies and large Froude numbers related
to the amplitude of oscillations. For example, if Fr51023,
the asymptotic value of the critical Rayleigh number, Rac

5453, is less than the one corresponding to the unmodulate
case 48p2. Here, we have a destabilizing effect.

Finally, Fig. 5 illustrates, for Fr51024 andV5100, the
dependence of the critical Rayleigh number Rac on the ef-
fective Prandtl number Pr* . It is worth noting that for these
parameters only the synchronous solutions exist. For in-
stance, ife50.1, we have Pr51 for Pr*5100 and Pr@1 for
Pr*@100. It can be seen from Fig. 5 that beyond the value
Pr*5100, the critical Rayleigh number tends, as expected, to
the critical one of the unmodulate case, Rac548p2. There-

fore, this result verifies that of the first asymptotic case and
shows the transition between the two limiting cases.

IV. SUMMARY

In this work, we have studied the influence of the gravi-
tational modulation on the instability threshold for a fluid
layer confined in a Hele-Shaw cell. The fluid layer is submit-
ted to a constant gradient of temperature in the same direc-
tion that gravity or in the opposite one. An appropriate
choice of the characteristic magnitudes related to the convec-
tion problems in Hele–Shaw cell together with an
asymptotic analysis provide two different linear formula-
tions. Each formulation depends on the magnitude order of
the Prandtl number. We have shown that if the Prandtl num-
ber is in the order of the unity or very large than the unity,
parametric oscillations have no stabilizing or destabilizing
effect. In this formulation, we have the same criterion of
stability, in term of the critical Rayleigh number Rac and
wave numberqc , that the one of the unmodulate case. Nev-
ertheless, at the onset of convection, the amplitudes of the
velocity field and temperature, given analytically, are peri-
odic and have the same frequency that the parametric oscil-
lations.

In contrast to the first asymptotic formulation Pr
5O(1) or Pr@1, the governing system of equations, corre-
sponding to the second formulation Pr5O(e2), is reduced to
the Mathieu equation. More precisely, the damping effect of
the vertical walls can be weakened and the convective para-
metric instability can occur in liquids with weak Prandtl
number as liquids metals. In the geometrical Hele-Shaw con-
figuration, the Mathieu equation is derived directly from the
governing system by using normal modes and may be con-
sidered as a good approximation to the second formulation.
Therefore, the Floquet theory can be applied to determine a
simple criterion of stability. It should be noticed that for the
numerical determination of the stability criterion, we have
performed an alternative method to that by Gresho and Sani.1

The method developed in this work, consists in exploiting
directly the Hill determinant.

In practice, the Hele-Shaw cells allow to realize a simu-
lation of flows in porous medium under certain
conditions.22,23 Therefore, this linear study can serve as
model to investigate the influence of the gravitational modu-
lation on the threshold of convective instability in porous
medium.
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