$Electronic\ Journal\ of\ Differential\ Equations\ \ ,\ Vol.\ 2001\ (\ 2001\)\ ,\ No\ .\ 31\ ,\ pp\ .\ 1-2\ 0\ .$ $ISSN:1\ 72-6691\ .\ URL: \ http:\ /\ /\ ej\ de\ .\ math\ .\ swt\ .\ edu\ or\ http:\ /\ /\ ej\ de\ .\ math\ .\ unt\ .\ edu$ edu

ftp ejde . math . swt . edu (login : ftp)

POTENTIAL THEORY FOR QUASILINIEAR ELLIPTIC EQUATIONS

A . BAALAL & A . BOUKRICHA

DEDICATED TO PROF . WOLFHARD HANSEN ON HIS 60 TH BIRTHDAY ABSTRACT . We discuss the potential theory associated with the quasilinear elliptic equation

$$-\operatorname{div}(\mathcal{A}(x,\nabla u)) + \mathcal{B}(x,u) = 0.$$

We study the validity of Bauer convergence property , the Brelot convergence property . We discuss the validity of the Keller - Osserman property and the existence of Evans functions .

1. Introduction This paper is devoted to a study of the quasilinear elliptic equation

$$-\operatorname{div}(\mathcal{A}(x,\nabla u)) + \mathcal{B}(x,u) = 0, \tag{1.1}$$

where $\mathcal{A}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ and $\mathcal{B}: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ are Carath \acute{e} odory functions satisfying the structure conditions given in Assumptions (I) , (A 1) , (A 2) , (A 3) , and (M) below . In particular we are interested in the potential theory , the degeneracy of the sheaf of continuous solutions and the existence of Evans functions for the equation (1 . 1) .

Equation of the same type as (1 . 1) were investigated in earlier years in many interesting papers , [1 9 , 20 , 1 5 , 1 8] . An axiomatic potential theory associated with the equation div $(\mathcal{A}(x,\nabla u))=0$ was recently introduced and discussed in [1 0] . These axiomatic setting are illustrated by the study of the p- Laplace equation $\Delta_p u=$ div (| ∇u | $^{p-2}$ ∇u) obtained by $\mathcal{A}(x,\xi)=$ | ξ | $^{p-2}$ ξ for every $x\in\mathbb{R}^d$ and $\xi\in\mathbb{R}^d$. We have $\Delta_2=\Delta$ where Δ , the Laplace operator on \mathbb{R}^d .

Our paper is organized as follows: In the second section we introduce the basic notation. In the third section we present the structure conditions needed for the mappings $\mathcal A$ and $\mathcal B$ in order to consider the equation (1.1). We then use the variational inequality to prove the solvability of the variational Dirichlet problem related to (1.1). In section 4 we prove a comparison principle for supersolutions and subsolutions, existence and uniqueness of the Dirichlet problem related to the sheaf $\mathcal H$ of continuous solutions of (1.1), as well as the existence of a basis of regular sets

1 99 1 Mathematics Subject Classification . $\,$ 3 1 C 1 5 , 35 J 60 .

 $\mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases}$. Quasilinear elliptic equation , Convergence property ,

Keller - Osserman property, Evans functions.

circlecopyrt-c2001 Southwest Texas State University .

Submitted October 24 , 2000 . Published May 7 , 200 1 .

Supported by Grant E 2 / C 1 5 from the Tunisian Ministry of Higher Education .

stable by intersection . In the fifth section we discuss the potential theory associated with equation (1 . 1) , prove that the harmonic sheaf $\mathcal H$ of solutions of (1 . 1) satisfies the Bauer convergence property , then introduce the presheaves of hyper - harmonic functions $*_{\mathcal H}$ and of hypoharmonic functions $*^{\mathcal H}$ and prove a comparison principle . In the sixth section we prove , using the obstacle problem , that $*_{\mathcal H}$ and $*^{\mathcal H}$ are sheaves . In the seventh section we study the degeneracy of the sheaf $\mathcal H$; we are not able to prove that the sheaf $\mathcal H$ is non degenerate even if we have the following Harnack inequality [1 9 , 20 , 1 8 , 4] :

For every open domain U in \mathbb{R}^d and every compact subset K of U the re exists two non - negative constants c_1 and c_2 such that for every $h \in \mathcal{H}^+(U)$,

$$\sup_{K} h \leqslant c_1 \inf_{K} h + c_2.$$

Let U be an open subset of \mathbb{R}^d , $d \ge 1$ and α a positive real number, let $0 < \varepsilon < 1$

d

and b be a non - negative function in $L^{p-\varepsilon}_{\mathrm{loc}}(\mathbb{R}^d)$. For every open U we consider the set $\mathcal{H}_{\alpha}(U)$ of all functions $u \in \mathcal{W}^{1,p}_{\mathrm{loc}}(U) \cap \mathcal{C}(U)$ which are solutions of the equation (1.1) with $\mathcal{B}(x,\zeta) = b(x) \operatorname{sgn}(\zeta) \mid \zeta \mid^{\alpha}$, then $(\mathbb{R}^d,\mathcal{H}_{\alpha})$ is a nonlinear Bauer space. In particular \mathcal{H}_{α} is non degenerate on \mathbb{R}^d . For $\alpha < p-1$, the Harnack inequality and the Brelot convergence property are valid, but in contrast to the linear and quasilinear theory (see e.g. [10])($\mathbb{R}^d,\mathcal{H}_{\alpha}$) is not elliptic in the sense of Definition 7.1. In the eighth section, we define, as in [5], regular Evans functions u tending to the infinity (or exploding) at the regular boundary points of u. We assume that u0 satisfies the following supplementary derivability and homogeneity conditions:

• For every $x_0 \in \mathbb{R}^d$, the function F from \mathbb{R}^d to \mathbb{R}^d defined by $F(x) = \mathcal{A}(x, x - x_0)$ is differentiable and div F is locally (essentially) bounded.

 $\bullet \mathcal{A}(x, \lambda \xi) = \lambda \mid \lambda \mid^{p-2} \mathcal{A}(x, \xi) \text{ for every } \lambda \in \mathbb{R} \text{ and every } x, \xi \in \mathbb{R}^d.$

These conditions are satisfied in the particular case of the p- Laplace operator with $p\geqslant 2$. We then prove that for every $\alpha>p-1$, the Keller - Osserman property in $(\mathbb{R}^d,\mathcal{H}_\alpha)$ is valid; i. e., every open ball admits a regular Evans function, which yields the validity of the Brelot convergence property. Among others, we prove for $\alpha>p-1$ a theorem of the Liouville type in the form $\mathcal{H}_\alpha(\mathbb{R}^d)=\{0\}$. Finally in the ninth section, we consider some applications of the previous results to the case of the p- Laplace operator, where we also prove the uniqueness of the regular Evans function for star domain and strict positive b and \mathcal{H}_α for $\alpha>p-1$.

Note that our methods are applicable to broader class of weighted equations (see [1 0]) . The use of the constant weight $\equiv 1$ is only for sake of simplicity .

2. Notation

We introduce the basic notation which will be observed throughout this paper . \mathbb{R}^d is the real Euclidean d- space , $d\geq 2$. For an open set U of \mathbb{R}^d and an positive integer $k,\mathcal{C}^k(U)$ is the set of all k t imes continuously differentiable functions on an open set U. $\mathcal{C}^\infty(U):=\bigcap_{k\geq 1}\mathcal{C}^k(U)$ and $\mathcal{C}^\infty_c(U)$ the set of all functions in $\mathcal{C}^\infty(U)$ compactly supported by U. For a measurable set $X,\mathcal{B}(X)$ denotes the set of all Borel numerical functions on X and for $q\geq 1,L^q(X)$ is the $q^{th}-$ power Lebesgue space defined on X. Given any set $\mathcal Y$ of functions $\mathcal Y_b(\mathcal Y^+)$ resp.) denote the set of all functions in $\mathcal Y$ which are bounded (positive resp.). $\mathcal W^{1,q}(U)$ is the (1,q)- Sobolev space on U. $\mathcal W^{1,q}_0(U)$ the closure of $\mathcal C^\infty_c(U)$ in $\mathcal W^{1,q}_0(U)$, relatively to its norm.

EJDE - 2 0 0 1 / 3 1 $\mathcal{W}^{-1q'}(U)$ is the dual of $\mathcal{W}^{1,q}_0(U)$, $q'=q(q-1)^{-1}$. $u\wedge v(\text{resp.}\ u\vee v)$ is the infinimum (resp. the maximum) of u and $v;u^+=u\vee 0$ and $u^-=u\wedge 0$.

Existence and Uniqueness of Solutions

Let Ω be a bounded open subset of $\mathbb{R}^d (d \ge 1)$. We will investigate the existence of solutions $u \in \mathcal{W}^{1,p}(\Omega)$, 1 , of the variational Dirichlet problem associatedwith the quasilinear elliptic equation

$$-\operatorname{div}(\mathcal{A}(x,\nabla u)) + \mathcal{B}(x,u) = 0.$$

In this paper we suppose that the functions $\mathcal{A}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ and $\mathcal{B}: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ are given Carath \acute{e} odory functions and the following structure conditions are

satisfied:

(I) $\zeta \to \mathcal{B}(x,\zeta)$ is increasing and $\mathcal{B}(x,0) = 0$ for every $x \in \mathbb{R}^d$. (A 1) There exists $0 < \varepsilon < 1$ such that for any $u \in L^{\infty}(\mathbb{R}^d)$,

$$\mathcal{B}(., u(.)) \in L^{p-\varepsilon \text{loc}}_{d}(\mathbb{R}^{d}).$$

(**A 2**) There exists $\nu > 0$ such that for every $\xi \in \mathbb{R}^d$,

$$\mid \mathcal{A}(x,\xi) \mid \leqslant \nu \mid \xi \mid^{p-1}$$
.

(A3) There exists $\mu > 0$ such that for every $\xi \in \mathbb{R}^d$,

$$\mathcal{A}(x,\xi).\xi \geqslant \mu \mid \xi \mid^p$$
.

For all $\xi, \xi' \in \mathbb{R}^d$ with $\xi \neq \xi'$, (M)

$$[\mathcal{A}(x,\xi) - \mathcal{A}(x,\xi')] \cdot (\xi - \xi') > 0.$$

We recall that assumptions (A2), (A3) and (M) are satisfied in the framework of [1 0] when the admissible weight is $\omega \equiv 1$. Recall that $u \in \mathcal{W}^{1,p}_{\mathrm{loc}}(\Omega)$ is a *s o lutio n* of (1 . 1) in Ω provided that for all $\phi \in$

$$\mathcal{W}_{0}^{1,p}(\Omega) \text{and} \mathcal{B}(.,u) \in L_{\text{loc}}^{p^{*'}}(\Omega),$$
$$\int_{\Omega} \mathcal{A}(x,\nabla u) \cdot \nabla \phi dx + \int_{\Omega} \mathcal{B}(x,u) \phi dx = 0. \quad (3.1)$$

A function $u \in \mathcal{W}^{1,p}_{loc}(\Omega)$ is termed subsolutions (resp. supersolutions) of (1 . 1) if for all non - negative functions $\phi \in \mathcal{W}_0^{1,p}(\Omega)$ and $\mathcal{B}(.,u) \in L^{p^{*'}}_{loc}(\Omega)$,

$$\int_{\Omega} \mathcal{A}(x, \nabla u) \cdot \nabla \phi dx + \int_{\Omega} \mathcal{B}(x, u) \phi dx \leqslant 0 \quad \text{(resp.} \quad \geqslant 0).$$

If u is a bounded subsolution (resp. bounded supersolution), then for every $k \ge 0$, u - k (resp. u + k) is also subsolution (resp. supersolution) for (1.1).

For a positive constant M and $u \in L^p(\Omega)$, we define the truncated function

$$\begin{aligned} & -M \quad u(x) \leqslant -M \\ \tau_M(u)(x) = braceleft mid - braceleft bt & u(x) \quad -M < u(x) < M \\ & M, \quad M \leqslant u(x) \end{aligned}$$

(a. e. $x \in \Omega$). It is clear that the truncation mapping τ_M is bounded and continuous from $L^p(\Omega)$ to itself.

4 A. BAALAL & A. BOUKRICHA EJDE – 2 0 1 / 3 1 For $u \in \mathcal{W}^{1,p}(\Omega)$ and $\mathcal{B}(x,\tau_M(u)) \in L^{ploc}_{*'}(\Omega)$, we define $\mathcal{L}_M : \mathcal{W}^{1,p}(\Omega) \to$

$$\mathcal{W}^{-1,p}(\Omega) \text{as}$$

$$\langle \mathcal{L}_M(u), \phi \rangle := \int_{\Omega} \mathcal{A}(x, \nabla u) \cdot \nabla \phi dx + \int_{\Omega} \mathcal{B}(x, \tau_M(u)) \phi dx, \quad \phi \in \mathcal{W}_0^{1,p}(\Omega)$$

here $\langle .,. \rangle$ is the pairing between $\mathcal{W}^{-1,p}(\Omega)$ and $\mathcal{W}^{1,p}(\Omega)$. It follows from Assumptions (A1), (A2), (A3), and the carath \acute{e} odory conditions that \mathcal{L}_M is well defined. We consider the variational inequality

$$\langle \mathcal{L}_M(u), v - u \rangle \geqslant 0, \quad \forall v \in \mathcal{K}, u \in \mathcal{K},$$
 (3.2)

where \mathcal{K} is a given closed convex set in $\mathcal{W}^{1,p}(\bowtie \bowtie \approx \lessdot \sim \bowtie \lor \sim \lessdot \bowtie \bowtie)$ such that for given $f \in \mathcal{W}^{1,p}(\bowtie \bowtie \approx \lessdot \sim \bowtie \lor \sim \lessdot \bowtie \bowtie \bowtie)$,

$$\mathcal{K} \subset f + \mathcal{W}_0^{1,p} (\bowtie \bowtie \approx \lessdot \sim \sim \bowtie \sim \lessdot \bowtie \approx \bowtie \lessdot).$$

Typical examples of closed convex sets \mathcal{K} are as follows: for $f \in \mathcal{W}^{1,p}(\bowtie \bowtie \approx \lessdot \sim \bowtie \searrow \sim \lessdot \bowtie \bowtie)$ and $\psi 1, \psi 2: \Omega \to [-\infty, +\infty]$ let the convex set is

$$\mathcal{K}^f_{\psi 1, \psi 2} = \mathcal{K}^f_{\psi 1, \psi 2}(\Omega) = \{ u \in \mathcal{W}^{1,p}(\Omega) : \psi 1 \leq u \leqslant \psi 2 \text{ a. e. in } \Omega, u - f \in \mathcal{W}^{1,p}_0(\Omega) \}.$$

(3.3) We write $\mathcal{K}_{\psi 1}^f = \mathcal{K}_{\psi 1,+\infty}^f(\Omega)$ and , if $f = \psi 1 \in \mathcal{W}^{1,p}(\Omega)$, $\mathcal{K}_f = \mathcal{K}_f^f$. A function u satisfying (3.2) with $M = +\infty$ and the closed convex sets $\mathcal{K}_{\psi 1}^f$ is called a s o lution to the o bstacle problem in $\mathcal{K}_{\psi 1}^f$. For the notion of obstacle problem, the reader is referred to monograph [10, p. 60] or [18, Chap. 5]. We observe that any solution of the obstacle problem in $\mathcal{K}_{\psi 1}^f(\Omega)$ is always a supersolution of the equation (1.1) in Ω . Conversely, a supersolution u is always a solution to the obstacle problem in $\mathcal{K}_u^u(\omega)$ for all open $\omega \subset \omega \subset \Omega$. Furthermore a solution u to equation (1.1) in an open set Ω is a solution to the obstacle problem in $\mathcal{K}_{-\infty}^u(\Omega)$ for all open $\omega \subset \omega \subset \Omega$. Similarly, a solution to the obstacle problem in $\mathcal{K}_{-\infty}^u(\Omega)$ is a solution to (1.1).

For the uniqueness of a solution to the obstacle problem we have following lemma [$1\ 0$, Lemma 3 . 22] :

Lemma 3.1. Suppose that u is a s o lution to the o betacle problem in $\mathcal{K}_g^f(\Omega)$. If $v \in \mathcal{W}^{1,p}(\Omega)$ is a supersolution of (1.1) in Ω such that $u \wedge v \in \mathcal{K}_g^f(\Omega)$, then $a \cdot e$.

$u \leqslant vin\Omega$.

Theorem 3. 1. Let $\psi 1$ and $\psi 2$ in $L^{\infty}(\bowtie \bowtie \bowtie \lessdot \sim \sim \bowtie \searrow \bowtie \bowtie \lor)$, $f \in \mathcal{W}^{1,p}(\bowtie \bowtie \bowtie \lessdot \sim \bowtie \searrow \bowtie \bowtie \lor)$ and $\mathcal{K}^f_{\psi 1, \psi 2}$ as a bo ve assume that $\mathcal{K}^f_{\psi 1, \psi 2}$ is non empty. Then for every positive constant M, $\parallel \psi 1 \parallel_{\infty} \vee \parallel \psi 2 \parallel_{\infty} \leqslant M < +\infty$ the variational inequality (3.2) has a unique s o lutio n. Moreover, if $w \in \mathcal{W}^{1,p}(\Omega)$ is a supersolution (resp. subsolution) to the equation (1.1) such that $w \wedge u$ (resp. $w \vee u$) $\in \mathcal{K}^f_{\psi 1, \psi 2}$, then $u \leqslant w$ (resp. $w \leqslant u$). Proof. Let $\parallel \psi 1 \parallel \infty \vee \parallel \psi 2 \parallel \infty \leqslant M < +\infty$. If $u, v \in \mathcal{K}^f_{\psi 1, \psi 2}$ are solutions of (3.2), it follows from (I) and (M) that

$$0 \geqslant \int_{\Omega} [\mathcal{A}(x, \nabla u) - \mathcal{A}(x, \nabla v)] \cdot \nabla(v - u) dx$$
$$+ \int_{\Omega} [\mathcal{B}(x, \tau_{M}(u)) - \mathcal{B}(x, \tau_{M}(v))] (v - u) dx$$
$$= \langle \mathcal{L}_{M}(u) - \mathcal{L}_{M}(v), v - u \rangle \geqslant 0,$$

EJDE – 2 0 0 1 / 3 1 POTENTIAL THEORY FOR QUASILINIEAR ELLIPTIC EQUATIONS 5 then v-u is constant on connected components of Ω . This , on the other hand , since $v-u\in\mathcal{W}^{1,p}_0(\Omega)$, implies that v=u.

To prove the existence we will use [1 2 , Corollary III . 1 . 8 , p . 87] . Since $\mathcal{K}_{\psi_1,\psi_2}^f$ is a non empty closed convex subset of $\mathcal{W}^{1,p}(\Omega)$, it is enough to prove that \mathcal{L}_M is monotone , coercive and weakly continuous on $\mathcal{K}_{\psi_1,\psi_2}^f$. We have

$$\langle \mathcal{L}_{M}(u) - \mathcal{L}_{M}(v), u - v \rangle = \int_{\Omega} [\mathcal{A}(x, \nabla u) - \mathcal{A}(x, \nabla v)] \cdot \nabla(u - v) dx + \int_{\Omega} [\mathcal{B}(x, \tau_{M}(u)) - \mathcal{B}(x, \tau_{M}(v))] \cdot (u - v) dx$$

for all $v, u \in \mathcal{K}^f_{\psi 1, \psi 2}$ and the structure conditions on \mathcal{A} and \mathcal{B} yield that \mathcal{L}_M is monotone and coercive (for the definition of monotone or coercive operator the reader is referred to [14, 12]).

To show that \mathcal{L}_M is weakly continuous on $\mathcal{K}^f_{\psi 1, \psi 2}$, let $(u_n)_n \subset \mathcal{K}^f_{\psi 1, \psi 2}$ be a se - quence that converges to $u \in \mathcal{K}^f_{\psi 1, \psi 2}$. There is a subsequence $(u_{n_k})k$ such that $u_{n_k} \to u$ and $\nabla u_{n_k} \to \nabla u$ pointwise a . e . in Ω . Since \mathcal{A} and \mathcal{B} are Carath \acute{e} odory functions , $\mathcal{A}(., \nabla u_{n_k})$ and $\mathcal{B}(., \tau_M(u_{n_k}))$ converges in measure to $\mathcal{A}(., \nabla u)$ and $\mathcal{B}(x, \tau_M(u))$ respectively [11]. Pick a subsequence , indexed also by n_k , such that $\mathcal{A}(., \nabla u_{n_k})$ and $\mathcal{B}(., \tau_M(u_{n_k}))$ converges pointwise a . e . in Ω to $\mathcal{A}(., \nabla u)$ and $\mathcal{B}(x, \tau_M(u))$ respectively . Because $(u_{n_k})_{n_k}$ is bounded in $\mathcal{W}^{1,p}(\Omega)$, it follow that $(\mathcal{A}(., \nabla u_{n_k}))_k$ is bounded in $(L_{p-1}^p(\Omega))^d$ and that $\mathcal{A}(., \nabla u_{n_k}) \to \mathcal{A}(., \nabla u)$ weakly in $(L_{p-1}^p(\Omega))^d$. We have also $\mathcal{B}(., \tau_M(u_{n_k})) \to \mathcal{B}(., \tau_M(u))$ weakly in $L^{p^*}(\Omega)$. Since the weak limits are independent of the choice of the subsequence , we have for all $\phi \in \mathcal{W}_0^{1,p}(\Omega)$

$$\langle \mathcal{L}_M(u_n), \phi \rangle \to \langle \mathcal{L}_M(u), \phi \rangle$$

and hence \mathcal{L}_M is weakly continuous on $\mathcal{K}^f_{\psi 1, \psi 2}$.

Let now $w \in \mathcal{W}^{1,p}(\Omega)$ be a supersolution of the equation (1.1) such that $u \wedge w \in \mathcal{K}^f_{\psi 1, \psi 2}$, then $u - (u \wedge w) \in \mathcal{W}^{1,p}_0(\Omega)$ and we have

$$0 \leqslant \int_{\Omega} [\mathcal{A}(x, \nabla w) - \mathcal{A}(x, \nabla u)] \cdot \nabla(u - (u \wedge w)) dx + \int_{\Omega} [\mathcal{B}(x, \tau_{M}(w)) - \mathcal{B}(x, \tau_{M}(u))] \cdot (u - (u \wedge w)) dx$$

$$= \int_{\{u > w\}} [\mathcal{A}(x, \nabla(u \wedge w)) - \mathcal{A}(x, \nabla u)] \cdot \nabla(u - (u \wedge w)) dx + \int_{\{u > w\}} [\mathcal{B}(x, \tau_{M}(u \wedge w)) - \mathcal{B}(x, \tau_{M}(u))] \cdot (u - (u \wedge w)) dx$$

It follow, by (I) and (M), that $\nabla(u-(u\wedge w))=0$ a.e. in Ω and hence $u\leqslant w$ a.e. in Ω . The same proof is valid if w is a subsolution. \square As an application of Theorem 3.1, we have the following two theorems. **Theorem 3.2.**Let $f\in \mathcal{W}^{1,p}(\bowtie \bowtie \approx <\sim \bowtie >\sim \bowtie >\sim <\bowtie \approx \bowtie <)\cap L^{\infty}(\bowtie \bowtie \approx <\sim \sim \bowtie >\sim <\bowtie \approx \bowtie <))$ and

$$\mathcal{K} = \{ u \in \mathcal{W}^{1,p}(\Omega) : f \le u \leqslant \| f \|_{\infty} \quad a. \quad e., u - f \in \mathcal{W}_0^{1,p}(\Omega) \}.$$

Then there exists $u \in \mathcal{K}$ such that

$$\langle \mathcal{L}(u), v - u \rangle \geqslant 0$$
 for all $v \in \mathcal{K}$.

Moreover , u is a supersolution of (1 . 1) in Ω . Proof . For m>0, by Theorem 3 . 1 there exists a unique function u_m in

$$\mathcal{K}_{f,\parallel}^f f \parallel_{\infty} + m = \{ u \in \mathcal{W}^{1,p}(\Omega) : f \leqslant u \leqslant \quad \parallel f \parallel \infty + \text{ma.e.}, u - f \in \mathcal{W}_0^{1,p}(\Omega) \}$$

such that

$$\langle \mathcal{L}_{\parallel} f \parallel_{\infty} + m(u_m), v - u_m \rangle \geqslant 0$$

for all $v \in \mathcal{K}_{f,\parallel}^f f \parallel_{\infty} + m$. Since $u_m - \parallel f \parallel \infty = u_m - f + f - \parallel f \parallel_{\infty} \leqslant u_m - f$ and $(u_m - f)^+ \geqslant (u_m - \parallel f \parallel_{\infty})^+$, we have $\eta := (u_m - \parallel f \parallel_{\infty})^+ \in \mathcal{W}_0^{1,p}(\Omega)$ (see e.g. [10, Lemma 1.25]). Moreover, since $u_m - \eta \in \mathcal{K}_{f,\parallel}^f f \parallel_{\infty} + m$ and $\parallel f \parallel_{\infty}$ is a supersolution of (1.1), we have

$$0 \leqslant -\int_{\Omega} \mathcal{A}(x, \nabla u_m) \cdot \nabla \eta dx - \int_{\Omega} [\mathcal{B}(x, u_m) - \mathcal{B}(x, \| f \|_{\infty})] \eta dx$$

$$= -\int_{\{u_m > \|} f \| \infty \} \mathcal{A}(x, \nabla u_m) \cdot \nabla u_m dx +$$

$$-\int_{\{u_m > \|} f \|_{\infty} \} [\mathcal{B}(x, u_m) - \mathcal{B}(x, \| f \| \infty)] (u_m - \| f \|_{\infty}) dx$$

$$\leqslant 0.$$

then $\nabla \eta = 0$ a. e. in Ω by (\mathbf{M}). Because $\eta \in \mathcal{W}_0^{1,p}(\Omega), \eta = 0$ a. e. in Ω . It follows that $u_m \leqslant \parallel f \parallel \infty$ a. e. in Ω . It follows that $u_m \leqslant \parallel f \parallel_{\infty}$ a. e. in Ω , and therefore $f \leqslant u_m < \parallel f \parallel_{\infty} + m$ a. e. in Ω . Given a non-negative $\phi \in \mathcal{C}_c^{\infty}(\Omega)$ and $\varepsilon > 0$ sufficiently small such that $u_m + \varepsilon \phi \in \mathcal{K}_{f,\parallel}^f f \parallel_{\infty} + m$ consequently

$$\langle \mathcal{L}(u_m), \phi \rangle \geqslant 0$$

which means that u_m is a supersolution of (1.1) in Ω . \square Theorem 3.3. Let Ω be a bounded open s e t of \mathbb{R}^d , $f \in \mathcal{W}^{1,p}(\Omega) \cap L^{\infty}(\Omega)$. Then there is a unique function $u \in \mathcal{W}^{1,p}(\Omega)$ with $u - f \in \mathcal{W}^{1,p}_0(\Omega)$ such that

$$\int_{\Omega} \mathcal{A}(x, \nabla u) \cdot \nabla \phi dx + \int_{\Omega} \mathcal{B}(x, u) \phi dx = 0,$$

$$whenever \phi \in \mathcal{W}_{0}^{1, p}(\Omega).$$

Proof. For m > 0, by Theorem 3 . 1 , there exists a unique u_m in

$$\mathcal{K}_{f,m} := \{ u \in \mathcal{W}^{1,p}(\Omega) : | u | \leqslant \| f \| \infty + \text{ma.e.}, u - f \in \mathcal{W}_0^{1,p}(\Omega) \},$$

such that

$$\langle \mathcal{L}_{\parallel} f \parallel_{\infty} + m(u_m), v - u_m \rangle \geqslant 0,$$

for all $v \in \mathcal{K}_{f,m}$. Since $u_m + \|f\|_{\infty} = u_m - f + f + \|f\|_{\infty} \geqslant u_m - f$ and $(u_m - f)^- \leqslant (u_m + \|f\|_{\infty}) \wedge 0$, we have $\eta := (u_m + \|f\|_{\infty}) \wedge 0 \in \mathcal{W}_0^{1,p}(\Omega)$ (see

EJDE – 2 0 0 1 / 3 1 POTENTIAL THEORY FOR QUASILINIEAR ELLIPTIC EQUATIONS 7 e . g . [1 0 , Lemma 1 . 25]) . Moreover , since $\eta+u_m\in\mathcal{K}_{f,m}$ and $-\parallel f\parallel\infty$ is a subsolu -

tion of (1.1), we have

$$0 \leqslant \int_{\Omega} \mathcal{A}(x, \nabla u_m) \cdot \nabla \eta dx + \int_{\Omega} [\mathcal{B}(x, u_m) - \mathcal{B}(x, - \| f \|_{\infty})] \eta dx$$

$$= -\int_{\{u_m < - \|} \| f \|_{\infty} \} \mathcal{A}(x, \nabla u_m) \cdot \nabla u_m dx +$$

$$-\int_{\{u_m < - \|} f \|_{\infty} \} [\mathcal{B}(x, u_m) - \mathcal{B}(x, - \| f \|_{\infty})] (u_m + \| f \|_{\infty}) dx$$

$$\leqslant 0,$$

then $\nabla \eta = 0$ a. e. in Ω by (\mathbf{M}). Because $\eta \in \mathcal{W}_0^{1,p}(\Omega), \eta = 0$ a. e. in Ω . It follows that $-\parallel f \parallel \infty \leqslant u_m$ a. e. in Ω . Note that $-u_m$ is also a solution in $\mathcal{K}_{-f,m}$ of the following variational inequality

$$\langle \widetilde{L} \| f \| \infty^{+m(u)} \cdot v - u \rangle = \int_{\Omega} \widetilde{A}(x, \nabla u) \cdot \nabla(v - u) dx$$
$$+ \int_{\Omega} \widetilde{B}(x, \tau_{\|f\|} \infty^{+m(u)}) (v - u) dx \geqslant 0,$$

where $\widetilde{A}(.,\xi) = -\mathcal{A}(.,-\xi)$ and $\widetilde{B}(.,\zeta) = -\mathcal{B}(.,-\zeta)$ which satisfy the same as - sumptions as \mathcal{A} and \mathcal{B} . It follows that $u_m \leqslant \|f\|_{\infty}$ a.e. in Ω , and therefore

 $|u_m| < ||f|| \infty + m$ a. e. in Ω . Given $\phi \in \mathcal{C}_c^{\infty}(\Omega)$ and $\varepsilon > 0$ sufficiently small such

that
$$u_m \pm \varepsilon \phi \in \mathcal{K}_{f,m}$$
, consequently $\langle \mathcal{L}(u_m), \phi \rangle = 0$

which means that u_m is a desired function . \square

By regularity theory (e . g . [$1\ 8$, Corollary 4 . $1\ 0$]) , any bounded solution of (1 . 1) can be redefined in a set of measure zero so that it becomes continuous .

Definition 3.1. A relatively compact open set U is called p-regularity if, for each function $f \in \mathcal{W}^{1,p}(U) \cap \mathcal{C}(U)$, the continuous solution u of (1.1) in U with $u-f \in \mathcal{W}^{1,p}(U)$ satisfies $\lim_{x \to y} u(x) = f(y)$ for all $y \in \partial U$.

A relatively compact open set U is called regular, if for every continuous function f on ∂U , there exists a unique continuous solution u of (1.1) on U such that

$$\lim_{x \to y} u(x) = f(y) \text{forall } y \in \partial U.$$

If U is p-hyphen regular and $f \in \mathcal{W}^{1,p}(U) \cap \mathcal{C}(U)$, then the solution u given by Theo - rem 3 . 3 satisfies

$$\lim_{x \in U, x \to z} u(x) = f(z)$$

for all $z \in \partial U[18, \text{ Corollary 4. } 18]$.

4. Comparison Principle and Dirichlet Problem

The following comparison principle is useful for the potential theory associated with equation (1.1): **Lemma 4.1.** Suppose that u is a supersolution and v is a subsolution on Ω such that

 $\lim_{x\to y}\sup v(x)\leqslant \lim_{x\to y}\inf u(x)$

8 A . BAALAL & A . BOUKRICHA EJDE – 2 0 1 / 3 1 for all $y \in \partial\Omega$ and if both s ides of the inequality are not s imultaneously $+\infty$ or

$$-\infty$$
, then $v \leq uin\Omega$.

Proof. By the regularity theory (see e . g . [1 8 , Corollary 4 . 1 0]) , we may assume that u is lower semicontinuous and v is upper semicontinuous on Ω . For fixed $\varepsilon > 0$, the set $K_{\varepsilon} = \{x \in \Omega : v(x) \geqslant u(x) + \varepsilon\}$ is a compact subset of Ω and therefore $\phi = (v - u - \varepsilon)^+ \in \mathcal{W}_0^{1,p}(\mathbb{R}^d)$. Testing by ϕ , we obtain

$$\int_{\{v>u+\varepsilon\}} \left[\mathcal{A}(x, \nabla(u+\varepsilon)) - \mathcal{A}(x, \nabla v) \right] \cdot \nabla \phi dx
+ \int_{\{v>u+\varepsilon\}} \left[\mathcal{B}(x, u+\varepsilon) - \mathcal{B}(x, v) \right] \phi dx \geqslant 0$$
(4.1)

Using Assumptions (I) and (M) we have

$$\int_{\{v>u+\varepsilon\}} \left[\mathcal{A}(x,\nabla u+\varepsilon) - \mathcal{A}(x,\nabla v) \right] \cdot \nabla (v-u-\varepsilon) dx = 0$$

and again by M we infer that $v \leqslant u + \varepsilon$ on Ω .

Letting $\varepsilon \to 0$ we have $v \leqslant u$ on

$$\Omega$$
.

Theorem 4.1. Every p- regular s e t is regular in the s ense of definition 3. 1. Proof. Let Ω be a p- regular set in \mathbb{R}^d and f be a continuous function on $\partial\Omega$. We shall prove that there exists a unique continuous solution u of (1 . 1) on Ω such that $\lim_{x\to y} u(x) = f(y)$ for all $y\in\partial\Omega$. The uniqueness is given by Lemma 4. 1. By $[1\ 8$, Theorem 4. $1\ 1]$ we have the continuity of u. For the existence, we may suppose that $f\in\mathcal{C}_c(\mathbb{R}^d)$ (Tietze's extension theorem). Let fi be a sequence of functions from $\mathcal{C}_c^1(\mathbb{R}^d)$ such that $|fi-f|\leq 2^{-i}$ and $|fi|+|f|\leq M$ on Ω for the same constant M and for all i. Let $u_i\in\mathcal{W}^{1,p}(\Omega)\cap\mathcal{C}(\Omega)$ be the unique solution for the Dirichlet problem with boundary data fi (Theorem 3. 3). Then from Lemma 4. 1 we deduce that $|u_i-u_j|\leq 2^{-i}+2^{-j}$ and $|u_i|\leq M$ on Ω for all i and j. We denote by u the limit of the sequence $(u_i)i$. We will show that u is a local solution of the equation . For this, we prove that the sequence $(\nabla u_i)i$ is locally uniformly bounded in $(L^p(\Omega))^d$. Let $\phi=-\eta^p u_i, \eta\in\mathcal{C}_c^\infty(\Omega), 0\leqslant \eta\leqslant 1$ and $\eta=1$ on $\omega\subset\omega\subset\Omega$. Since $\phi\in\mathcal{W}_0^{1,p}(\Omega)$, we have

$$0 = \int_{\Omega} \mathcal{A}(x, \nabla u_{i}) \cdot \nabla \phi dx + \int_{\Omega} \mathcal{B}(x, u_{i}) \phi dx$$

$$= \int_{\Omega} \mathcal{A}(x, \nabla u_{i}) \cdot (-\eta^{p} \nabla u_{i} - pui\eta^{p-1} \nabla \eta) dx - \int_{\Omega} \eta^{p} \mathcal{B}(x, u_{i}) u_{i} dx$$

$$\leq -\mu \int_{\Omega} \eta^{p} |\nabla u_{i}|^{p} dx + p\nu \int_{\Omega} \eta^{p-1} |\nabla u_{i}|^{p-1} |u_{i}| |\nabla \eta| dx + C(M, ||\eta||_{\infty}, |\Omega|),$$

and therefore, using the Young inequality, we obtain

$$\int_{\Omega} \eta^{p} | \nabla u_{i} |^{p} dx$$

$$\leqslant p^{\varepsilon^{p}} \nu_{r}^{\mu} \int_{\Omega} \eta^{p} | \nabla u_{i} |^{p} dx + \nu p_{\varepsilon^{p} \mu} \int_{\Omega} | u_{i} |^{p} | \nabla \eta |^{p} dx + C(M, || \eta ||_{\infty}, |\Omega|)$$

$$\leqslant \nu_{p^{\varepsilon^{p}}}^{\mu}, \int_{\Omega} \eta^{p} | \nabla u_{i} |^{p} dx + C(M, || \eta ||_{\infty}, |\Omega|, || \nabla \eta ||_{\infty}, \varepsilon).$$

$$If 0 < \varepsilon < \begin{pmatrix} c_1 \\ pa1 \end{pmatrix} p - p1, then$$

$$\int_{\omega} |\nabla u_i|^p dx \leqslant \mu C(M, ||\eta_{\mu}||_{\infty_{-}} I^{\nu}_{,p}|_{\varepsilon^p, ||} \nabla \eta ||_{\infty}, \varepsilon) for all i.$$

It follows that the sequence $(u_i)^i$ is lo cally uniformly bounded in $\mathcal{W}^{1,p}(\Omega)$. Fix $D \in G \in \Omega$. Since $(u_i)^i$ converges pointwise to u and by $\begin{bmatrix} 1 & 0 \\ \end{bmatrix}$, Theorem 1 . 32 $\end{bmatrix}$, we obtain that $u \in \mathcal{W}^{1,p}(D)$ and $(u_i)^i$ converges weakly, in $\mathcal{W}^{1,p}(D)$, to u. Let $\eta \in \mathcal{C}_0^{\infty}(G)$ such that $0 \leq \eta \leq 1, \eta = 1$ in D and testing by $\phi = \eta(u - u_i)$ for the solution u_i , we have

$$-\int_{G} \eta \mathcal{A}(x, \nabla u_{i}) \cdot \nabla(u - u_{i}) dx$$

$$= \int_{G} (u - u_{i}) \mathcal{A}(x, \nabla u_{i}) \cdot \nabla \eta dx + \int_{G} \eta \mathcal{B}(x, u_{i}) (u - u_{i}) dx$$

$$\leqslant \left(\int_{G} |u - u_{i}|^{p} dx \right) 1/p [C + \nu \left(\int_{G} |\nabla u_{i}|^{p} dx \right) p - p 1]$$

$$\leqslant C\left(\int_{G} |u - u_{i}|^{p} dx \right) 1/p.$$

Since

EJDE - 2 0 0 1 / 3 1

$$0 \leqslant \int_{D} [\mathcal{A}(x, \nabla u) - \mathcal{A}(x, \nabla u_{i})] \cdot \nabla(u - u_{i}) dx$$
$$\leqslant \int_{G} \eta \mathcal{A}(x, \nabla u) \cdot \nabla(u - u_{i}) dx + C(\int_{G} |u - u_{i}|^{p} dx) 1/p$$

and the weak convergence of $(\nabla u_i)i$ to ∇u implies that

$$\lim_{i \to \infty} \int_G \eta \mathcal{A}(x, \nabla u) \cdot \nabla (u - u_i) dx = 0,$$

we conclude

$$\lim_{i \to \infty} \int_D [\mathcal{A}(x, \nabla u) - \mathcal{A}(x, \nabla u_i)] \cdot \nabla (u - u_i) dx = 0.$$

Now [1 0, Lemma 3.73] implies that $\mathcal{A}(x, \nabla u_i)$ converges to $\mathcal{A}(x, \nabla u)$ weakly in

$$(L^{p'}(D))^n$$

Let $\psi \in C_0^{\infty}(G)$. By the continuity in measure of the Carath \acute{e} odory function $\mathcal{B}(x,z)$ [11] and by using the domination convergence theorem (in measure), we have

$$\lim_{i \to \infty} \int_{\Omega} \mathcal{B}(x, u_i) \psi dx = \int_{\Omega} \mathcal{B}(x, u) \psi dx.$$

Finally we obtain

$$0 = \lim_{i \to \infty} \int_{\Omega} \mathcal{A}(x, \nabla u_i) \cdot \nabla \psi dx + \int_{\Omega} \mathcal{B}(x, u_i) \psi dx$$

$$= \int_{\Omega} \mathcal{A}(x, \nabla u) \cdot \nabla \psi dx + \int_{\Omega} \mathcal{B}(x, u) \psi dx.$$

By an application of [18, Corollay 4.18] for each u_i we obtain

$$x \in \lim_{\Omega, x \to z} u_i(x) = fi(z)$$

10 A . BAALAL & A . BOUKRICHA EJDE – 201/31 for all $z \in \partial \Omega$. From the following estimation , of u on all Ω ,

$$u_i - 2^{-i} \leqslant u \leqslant u_i + 2^{-i}$$
 for all i

we deduce that for all i

$$fi(z) - 2^{-i} \leqslant x \to z_{\lim\inf}^{x \in \Omega} u(z) \leqslant x \to z_{\lim\sup}^{x \in \Omega} u(z) \leqslant fi(z) + 2^{-i}.$$

Letting $i \to \infty$ we obtain

$$\lim_{x \to z} u(x) = f(z)$$

for all $z \in \partial \Omega$ which finishes the proof . \square

Corollary 4.1. There exists a basis V of regular s e ts which is s table by inters ection i. e. for e very U and V in V, we have $U \cap V \in V$.

The proof of this corollary can be found in Theorem 4 . 1 and [1 0 , Corollary 6 . 32]

For every open set V and for every $f \in \mathcal{C}(\partial V)$ we shall denote by $H_V f$ the s o lutio n of the problem for the equation (1 . 1) on V with the boundary data f.

5 . Nonlinear Potential Theory associated with the equation (1 . 1)

For every open set U we shall denote by $\mathcal{U}(U)$ the set of all relatively compact open , regular subset V in U with $V \subset U$.

By previous section and in order to obtain an axiomatic nonlinear potential theory , we shall investigate the harmonic sheaf associated with (1 . 1) and defined as follows : For every open subset U of $\mathbb{R}^d(d\geqslant 1)$, we set

$$\mathcal{H}(U) = \{ u \in \mathcal{C}(U) \cap \mathcal{W}_{\text{loc}}^{1,p}(U) : u \text{ is a solution of } (1.1) \}$$

=
$$\{u \in \mathcal{C}(U) : H_V u = u \text{ for every } V \in \mathcal{U}(U)\}$$
.

Element in the set $\mathcal{H}(U)$ are called *harmonic* on U.

We recall (see [4]) that (X, \mathcal{H}) satisfies the Bauer convergence property if for every subset U of X and every monotone sequence $(h_n)_n$ in $\mathcal{H}(U)$, we have $h = \lim_{n \to \infty} h_n \in \mathcal{H}(U)$ if it is lo cally bounded.

Proposition 5.1. Let be U an open subset of \mathbb{R}^d . Then every family $\mathcal{F} \subset \mathcal{H}(U)$ of locally uniformly bounded harmonic functions is equicontinuous.

Proof . Let $V \subset V \subset U$ and a family $\mathcal{F} \subset \mathcal{H}(U)$ of lo cally uniformly bounded

harmonic functions . Then sup $\{\mid u(x)\mid:x\in V\text{ and }u\in\mathcal{F}\}<\infty\text{ and by }[1\ 8\]$, is equicontinuous on V. \square

Corollary 5.1. We have the Bauer convergence properties and moreover every locally bounded family of harmonic functions on an open s e t is relatively compact.

Proof. Let U be an open set and \mathcal{F} a lo cally bounded subfamily of $\mathcal{H}(U)$. By Proposition 5 . 1 , there exist a sequence $(u_n)_n$ in \mathcal{F} which converge to u on U lo cally uniformly . Let now $V \in \mathcal{U}(U)$. For every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $u-\varepsilon \leqslant u_n \leqslant u+\varepsilon$ for every $n \geqslant n_0$. The comparison principle yields therefore $(H_V u)-\varepsilon \leqslant u_n \leqslant (H_V u)+\varepsilon$, thus $(H_V u)-\varepsilon \leqslant u \leqslant (H_V u)+\varepsilon$. Letting $\varepsilon \to 0$, we

$$get u = H_V u$$
. \square

EJDE – 2 0 0 1 / 3 1 POTENTIAL THEORY FOR QUASILINIEAR ELLIPTIC EQUATIONS 1 1 **Proposition 5 . 2 .** [4] Let V a regular subset of \mathbb{R}^d and let $(f_n)_n$ and f in $\mathcal{C}(\partial V)$

such that $(f_n)_n$ is a monotone s equence converging to f. Then $\sup_n H_V f_n$ converge

$$toH_V f$$
.

Proof. Let V a regular subset of \mathbb{R}^d and let $(f_n)_n$ and f in $\mathcal{C}(\partial V)$ such that $(f_n)_n$ is increasing to f. Then, by Lemma 4.1, we have

$$\sup H_V f_n \leqslant H_V f$$

and , by Corollary 5.1 \sup_n H $\ Vf_n\in \mathcal{H}(V).$ Moreover , For every n and every $z\in \partial V$ we have

$$f_n(z) \le \lim_{x \to z} \inf(\sup_n H_V f_n(x)) \le \lim_{x \to z} \sup(\sup_n H_V f_n(x)) \le f(z).$$

Letting n tend to infinity we obtain that

$$f(z) = \lim_{x \to z} \sup_{n} H_V f_n(x).$$

By Lemma 4 . 1 , this shows that in fact H $Vf = \sup_n H_V f_n$. An analogous proof can be given if $(f_n)_n$ is decreasing .

Corollary 5.2. [4] Let V be a regular subset of \mathbb{R}^d and $(f_n)_n$ and $(gn)_n$ to s equences in $\mathcal{C}(\partial V)$ which are monotone in the same s ense such that $\lim_n f_n = \lim_n gn$. Then

$$\lim_{n} H_{V} f_{n} = \lim_{n} H_{V} g n.$$

Proof. We assume without loss the generality that (f_n) and (gn) are both increasing. Obviously, $H_V(gn \wedge f_m) \leq H$ Vgn for every n and m in \mathbb{N} , hence $\sup_n H_V(gn \wedge f_m) \leq \sup_n H_Vgn$ for every m. Since the sequence $(gn \wedge f_m)_n$ is increasing to f_m , the previous proposition implies that H $Vf_m \leq \sup_n H_Vgn$. We then have $\sup_n H_Vf_n \leq \sup_n H$ Vgn. Permuting (f_n) and (gn) we obtain the converse inequality. \square

Let V be a regular subset of \mathbb{R}^d . For every lower bounded and lower semicon - tinuous function v on ∂V we define the set

$$H_V v = \sup \{H_V f_n : (f_n)_n \text{ in } \mathcal{C}(\partial V) \text{ and increasing to } v\}.$$

n

For every upper bounded and upper semicontinuous function u on ∂V we define $H_V u = \inf_n \{H_V f_n : (f_n)_n \text{ in } \mathcal{C}(\partial V) \text{ and decreasing to } u\}.$

Let be U an open set of \mathbb{R}^d . A lower semicontinuous and lo cally lower bounded function u from U to \mathbb{R} is termed *hyperharmonic* on U if $H_V u \leqslant u$ on V for all V in $\mathcal{U}(U)$. A upper semicontinuous and lo cally upper bounded function v from U to \mathbb{R} is termed *hypoharmonic* on U if $H_V u \geqslant u$ on V for all V in $\mathcal{U}(U)$. We will denote by $*_{\mathcal{H}}(U)$ (resp. $*^{\mathcal{H}}(U)$) the set of all hyperharmonic (resp. hypoharmonic) functions on U.

For $u \in asterisk math - H(U), v \in *^{\mathcal{H}}(U)$ and $k \geqslant 0$ we have $u + k \in *_{\mathcal{H}}(U)$ and $v - k \in *^{\mathcal{H}}(U)$. Indeed, let $V \in \mathcal{U}(U)$ and a continuous function such that $g \leqslant u + k$ on ∂V , then

 $H_V(g-k) \leqslant H_V u \leqslant u$. Since $(H_V g) - k \leqslant H_V(g-k)$, we therefore get $H_V g \leqslant u + k$

andthus $u + k \in *_{\mathcal{H}}(U)$.

We have the following comparison principle :

Lemma 5 . 1 . Suppose that u is hyperharmonic and v is hypoharmonic on an open s e t U. If

$$\lim_{U\ni x\to y}\sup v(x)\leqslant \lim_{U\ni x\to y}$$

for all $y \in \partial U$ and if both s ides of the previous in equality are not s imultaneously $+\infty$ or $-\infty$, then $v \leq u$ in U.

The proof is the same as in [10, p. 133].

6. Sheaf Property for Hyperharmonic and Hypoharmonic Functions

For open subsets U of \mathbb{R}^d , we denote by $\mathcal{S}(U)$ (resp. by $\mathcal{S}(U)$) the set of all supersolutions (resp. subsolutions) of the equation (1.1) on U.

Recall that a map \mathfrak{F} which to each open subset U of \mathbb{R}^d assigns a subset $\mathfrak{F}(U)$ of $\mathfrak{B}(U)$ is called sheaf if we have the following two properties :

(Presheaf Property) For every two open subsets U, V of \mathbb{R}^d such that $U \subset V$,

$$\mathfrak{F}(V)|U\subset\mathfrak{F}(U)$$

(Localization Property) For any family $(U_i)_{i\in I}$ of open subsets and any numerical function h on $U=\bigcup_{i\in I}U_i, h\in\mathfrak{F}(U)$ if $h_{|U_i|}\in\mathfrak{F}(U_i)$ for every $i\in I$.

An easy verification gives that \mathcal{S} and \mathcal{S} are sheaves . Furthermore, we have the following results which generalize many earlier [17,2,7,10].

Theorem 6.1. Let U be a non empty open subset in \mathbb{R}^d and $u \in asterisk math - H(U) \cap \mathfrak{B}_b(U)$. Then u is a supersolution on U.

Proof. First, we shall prove that for every open $O \subset O \subset U$, there exists an increasing sequence $(u_i)i$ in in O of supersolutions such that $u = \lim_{i \to \infty} u_i$ on O. Let $(\phi i)i$ be an increasing sequence in $\mathcal{C}_c^{\infty}(U)$ such that $u = \sup_i \phi i$ on O. Let u_i be the solution of the obstacle problem in the non empty convex set

$$\mathcal{K}_i := \{ v \in \mathcal{W}^{1,p}(O) : \phi i \leqslant v \leqslant \| \phi i \| \infty + \| \phi i + 1 \| \infty \text{ and } v - \phi i \in \mathcal{W}_0^{1,p}(O) \}.$$

The existence and the uniqueness are given respectively by Theorem 3 . 1; moreover is a supersolution (Theorem 3 . 2). Since u_{i+1} is a supersolution and $u_i \wedge u_{i+1} \in \mathcal{K}_i$, we have $u_i \leq u_{i+1}$ in O. We have to prove that the sequence $(u_i)i$ is increasing to u. Let x_0 be an element of the open subset $G_i := \{x \in O : \phi_i(x) < u_i(x)\}$ and ω be a domain such that $x_0 \in \omega \subset \omega \subset G_i$. Since for every $\psi \in \mathcal{C}_c^{\infty}(\omega)$ and for sufficiently

small
$$\mid \varepsilon \mid u_i \pm \varepsilon \psi \in \mathcal{K}_i$$
,
$$\int_{\omega} \mathcal{A}(x, \nabla u_i) \cdot \nabla \psi dx + \int_{\omega} \mathcal{B}(x, u_i) \psi dx = 0.$$

Then u_i is a solution of the equation (1.1) on ω and by the sheaf property of \mathcal{H} , u_i is a solution of the equation (1.1) on G_i . Now the comparison principle implies that $u_i \leq u$ on G_i , hence $\phi i \leq u_i \leq u$ on O and therefore $u = \sup_i u_i$. Finally, the boundedness of the sequence $(u_i)i$ and the same techniques in the proof of Theorem 4.1 yield that $(u_i)i$ is locally bounded in $\mathcal{W}^{1,p}(O)$ and that u is a supersolution of the equation (1.1) in O. \square

Corollary 6.1. Let U be a non empty open subset in \mathbb{R}^d and $u \in \mathcal{W}^{1,p}_{loc}(U) \cap *_{\mathcal{H}}(U)$. Then u is a supersolution on U. Moreover the infinimum of two supersolutions is also a supersolution.

EJDE – 2001/31 POTENTIAL THEORY FOR QUASILINIEAR ELLIPTIC EQUATIONS 13 Proof . Let $u \in \mathcal{W}^{1,p}_{\mathrm{loc}}(U) \cap *_{\mathcal{H}}(U)$. The Theorem 6 . 1 implies that $u \wedge n$ is a super -solution for all $n \in \mathbb{N}$, consequently we have for every positive $\phi \in \mathcal{C}^{\infty}_{c}(U)$

$$0 \leqslant \int_{U} \mathcal{A}(x, \nabla(u \wedge n)) \cdot \nabla \phi dx + \int_{U} \mathcal{B}(x, u \wedge n) \phi dx$$
$$= \int_{\{u < n\}} \mathcal{A}(x, \nabla u) \cdot \nabla \phi dx + \int_{U} \mathcal{B}(x, u \wedge n) \phi dx.$$

Letting $n \to +\infty$ we obtain

$$0 \leqslant \int_{U} \mathcal{A}(x, \nabla u) \cdot \nabla \phi dx + \int_{U} \mathcal{B}(x, u) \phi dx$$

for all positive $\phi \in \mathcal{C}^\infty_c(U)$, thus u is a supersolution . Moreover , if u and v are two supersolutions then $u \wedge v \in \mathcal{W}^{1,p}_{\mathrm{loc}}(U) \cap asterisk math - H(U)$ so $u \wedge v$ is a supersolution . \square

Theorem 6.2. asterisk math - H is a sheaf.

Proof. Let $(U_i)i \in I$ be a family of open subsets of \mathbb{R}^d , $U = \bigcup_{i \in I} U_i$ and $h \in asterisk math - H(U_i)$

for every $i \in I$. Then by the definition of hyperharmonic function , we have $h \wedge n \in asteriskmath - H(U_i)$ for every $(i,n) \in I \times \mathbb{N}$ and by Theorem 6.1, $h \wedge n$ is a supersolution on each U_i . Since \mathcal{S} is a sheaf , we get $h \wedge n \in \mathcal{S}(U) \subset *_{\mathcal{H}}(U)$. Thus $h = \sup_n h \wedge n \in asteriskmath - H(U)$ and $*_{\mathcal{H}}$ is a sheaf . \square

Remark 6.1. For every open subset U of \mathbb{R}^d , let $\widetilde{H}(U)$ denote the set of all $u \in \mathcal{W}^{1,p}(U) \cap \mathcal{C}(U)$ such that $\widetilde{B}(x,u) \in L^{p\mathrm{loc}}(U)$ and

$$\int_{U} \mathcal{A}(x, \nabla u) \cdot \nabla \phi dx + \int_{U} \widetilde{B}(x, u) \phi dx = 0$$

for every $\phi \in \mathcal{W}_0^{1,p}(U)$, where $\widetilde{B}(x,\zeta) = -\widetilde{B}(x,-\zeta)$. It is easy to see that the mapping $\zeta \to \widetilde{B}(x,\zeta)$ is increasing and that $u \in \mathcal{H}(U)$ if and only if $-u \in \widetilde{H}(U)$. Furthermore \mathcal{H} and \widetilde{H} have the same regular sets and for every $V \in \mathcal{U}(U)$ and $f \in \mathcal{C}(\partial V)$ we have $H_V f = -\widetilde{H}V(-f)$. It follows that $u \in *^{\mathcal{H}}(U)$ if and only if $-u \in asteriskmath - H(U)$ and therefore $*^{\mathcal{H}}$ is a sheaf.

7. The degeneracy of the sheaf $\,\mathcal{H}\,$

As in the previous section we consider the sheaf \mathcal{H} defined by (1.1). Recall that the *Harnack inequality* or the *Harnack principle* is satisfied by \mathcal{H} if for every domain U of \mathbb{R}^d and every compact subset K in U, there exists two constants $c_1 \geq 0$ and $c_2 \geq 0$ such that for every $h \in \mathcal{H}^+(U)$,

$$\sup_{x \in K} h(x) \leqslant c_1 \inf_{x \in K} h(x) + c_2 \tag{HI}$$

We remark that, if for every $\lambda > 0$ and $h \in \mathcal{H}^+(U)$ we have $\lambda h \in \mathcal{H}^+(U)$, then we can choose $c_2 = 0$ and we obtain the classical Harnack inequality.

The Harnack inequality , for quasilinear elliptic equation , is proved in the fundamental tools of Serrin $[\ 1\ 9\]$, see also $[\ 20\ ,\ 1\ 3\]$. For the linear case see $[\ 9\ ,\ 3\ ,\ 1\ ,\ 8\]$.

In the rest of this section , we assume that $\mathcal B$ satisfy the following supplementary condition .

А

(*) There exists $b \in L^{p-\varepsilon}_{loc}(\mathbb{R}^d)$, $0 < \varepsilon < 1$, such that $|\mathcal{B}(x,\zeta)| \leq b(x) |\zeta|^{\alpha}$ for $every x \in \mathbb{R}^d$ and $\zeta \in \mathbb{R}$.

Small powers $(0 < \alpha < p - 1)$. We have the validity of Harnack principle given by the following proposition .

Proposition 7.1. Let \mathcal{H} be the sheaf of the continuous so lutions of the equation (1.1). Assume that the condition (*) is satisfies with $0 < \alpha < p - 1$. Then the Harnack principle is satisfied by \mathcal{H} .

The proof of this proposition can be found in [18, p. 178] or [19]

Definition 7.1. The sheaf \mathcal{H} is called elliptic if for every regular domain V in \mathbb{R}^d , $x \in V$ and $f \in \mathcal{C}^+(\partial V)$, $H_V f(x) = 0$ if and only if f = 0.

In the following example , we have the Harnack inequality but not the ellipticity . This is in contrast to the linear theory or quasilinear setting of nonlinear potential theory given by the $\mathcal{A}-$ harmonic functions in $[\ 1\ 0\]$.

Example 7.1. We assume that $\mathcal{B}(x,\zeta) = \operatorname{sgn}(\zeta) |\zeta|^{\alpha}$ with $0 < \alpha < p-1$ and

$$\mathcal{A}(x,\xi) = |\xi|^{p-2} \xi$$
. Let $u = cr^{\beta}$ with $\beta = p(p-1-\alpha)^{-1}$ and

$$c = p^{pp_{-1}^{-1} - \alpha} (p - 1 - \alpha) pp_{-1} - \alpha [d(p - 1 - \alpha) + \alpha p] p - 1_{-}^{1} \alpha.$$

With an easy verification, we will find that for every $x_0 \in \mathbb{R}^d$ and ball B (x_0, ρ) , there exists a solution u(in the form $c \parallel x - x_0 \parallel \beta)$ on B (x_0, ρ) such that $\Delta_p u = u^{\alpha}$ with $u(x_0) = 0$ and u(x) > 0 for every $x \in B$ $(x_0, \rho) \setminus \{x_0\}$. We therefore obtain that the sheaf \mathcal{H} is not elliptic and curiously we have the existence of a basis of regular set \mathcal{V} such that for every $V \in \mathcal{V}$, there exist $x_0 \in V$ and $f \in \mathcal{C}(\partial V)$ with f > 0 on

$$\partial V$$
 and $H_V f(x_0) = 0$.

We will prove that the sheaf given in the previous example is non - degenerate in the following sense :

Definition 7.2. A sheaf \mathcal{H} is called non-degenerate on an open U if for every $x \in U$, there exists a neighborhood V of x and $h \in \mathcal{H}(V)$ with $h(x) \neq 0$.

Proposition 7.2. Assume that the condition (*) is satisfies with $0 < \alpha < p-1$ and $\mathcal{A}(x,\lambda\xi) = \lambda \mid \lambda \mid^{p-2} \mathcal{A}(x,\xi)$ for all $x,\xi \in \mathbb{R}^d$ and for all $\lambda \in \mathbb{R}$. Then the

sheaf \mathcal{H} is non degenerate and more we have : for every regular $s \in V$, and $x \in V$,

$$\sup_{h \in \mathcal{H}(V)} h(x) = +\infty.$$

Proof. It is sufficient to prove that for every $x_0 \in \mathbb{R}^d$, $\rho > 0$, $n \in \mathbb{N}$ and $u_n = H_{B(x_0,\rho)}n$ we have u_n converges to infinity at any point of B (x_0,ρ) . The comparison principle yields that $0 \le u_n \le n$ on B (x_0,ρ) . Put $u_n = nv_n$, we then obtain:

$$\int \mathcal{A}(x, \nabla v_n) \nabla \phi dx + n^{1-p} \int \mathcal{B}(x, nv_n) \phi dx = 0$$

for every $\phi \in \mathcal{C}_c^{\infty}(B(x_0, \rho))$ and for every $n \in \mathbb{N}^*$. The assumptions on \mathcal{B} yields

$$\lim_{n\to\infty}\int \mathcal{A}(x,\nabla v_n)\nabla\phi dx=0;$$

since $0 \leq v_n \leq 1$, we have

$$|n^{1-p}\mathcal{B}(x,nv_n)| \leqslant n^{\alpha-p+1}b(x) \leqslant b(x)$$

and by [18, Theorem 4.19], v_n are equicontinuous on the closure $B_{x_0,\rho}$ of the ball B (x_0,ρ) , then by the Ascoli's theorem, $(v_n)_n$ admits a subsequence which is uniformly

$$\int \mathcal{A}(x,\nabla v)\nabla\phi dx = 0$$

for every $\phi \in \mathcal{W}_0^{1,p}(B(x_0,\rho))$. Since v = 1 on $\partial B(x_0,\rho), v = 1$ on $B_{x_0,\rho}$. The relation $u_n = nv_n$ yields the desired result. \square

Big Powers $(\alpha \ge p-1)$. We shall investigate (1.1) in the case $\alpha \ge p-1$. Let \mathcal{H} be the sheaf of the continuous solutions of (1.1). In [18] or [19], we find the following form of the Harnack inequality .

Theorem 7.1. Assume that the condition (*) is satisfies with $\alpha \geqslant p-1$. Then For every non empty open s e t U in \mathbb{R}^d , for every constant M>0 and every compact K in U, there exists a constant C=C(K,M)>0 such that for every $u\in\mathcal{H}^+(U)$

$$with u \leqslant M,$$

$$\sup_{K} u \leqslant C \inf_{K} u.$$

Corollary 7.1. If the condition (*) is satisfies with $\alpha \geqslant p-1$, then \mathcal{H} is non-degenerate and e l lip tic. Moreover, for every domain U in \mathbb{R}^d and $u \in \mathcal{H}^+(U)$, we have either u>0 on U or u=0 on U.

Remark 7.1. If $\alpha = p - 1$, the constant in *Theorem 7.1* does not depend on M and we have the classical form of the Harnack inequality.

We recall that a sheaf \mathcal{H} satisfies the *Brelot convergence property* if for every domain U in \mathbb{R}^d and for every monotone sequence $(h_n)_n \subset \mathcal{H}(U)$ we have $\lim_n h_n \in \mathcal{H}(U)$ if it is not identically $+\infty$ on U.

Using the same proof as in [4], we have the following proposition.

Proposition 7.3. If the Harnack inequality is satisfied by \mathcal{H} , then the convergence property of Brelot is fulfilled by \mathcal{H} .

Remark 7.2. In contrast to the linear case (s ee [16]) the converse of Proposition 7.3 is not true (s ee [5]) and hence the validity of the convergence property of Brelot does not imply the validity of the Harnack inequality.

An Application. Let \mathcal{H}_{α} be the sheaf of all continuous solution of the equation

$$\begin{split} -\mathrm{div}\mathcal{A}(x,\nabla u) + b(x)\mathrm{sgn}(u) \mid u\mid^{\alpha} &= 0\\ \mathrm{where} b \in L^{d-\varepsilon \mathrm{loc}}(\mathbb{R}^d), b \geqslant 0 \mathrm{and} 0 < \varepsilon < 1. \end{split}$$

Theorem 7.2. a) For ea ch $0 < \alpha < p-1$, $(\mathbb{R}^d, \mathcal{H}_{\alpha})$ is a Bauer harmonic space satisfying the Brelot convergence property, but it is not e l lip ti c in the sense of Definition 7.1.

b) For each $\alpha \geqslant p-1$, $(\mathbb{R}^d, \mathcal{H}_{\alpha})$ is a Bauer harmonic space e l lip ti c in the s ense of Definition 7. 1 and the convergence property of Brelot is fulfilled by \mathcal{H}_{p-1} .

8. Keller - Osserman Property

Let $\mathcal H$ be the sheaf of continuous solutions related to the equation (1.1). **Definition 8.1.** Let U be a relatively compact open subset of $\mathbb R^d$. A function $u\in \mathcal H^+(U)$ is called regular Evans function for $\mathcal H$ and U if $\lim_{\ni U} u(x) = +\infty$ for every regular point z in the boundary of U.

For an investigation of regular Evans functions see [5].

Definition 8.2. We shall say that \mathcal{H} satisfies the Keller - Osserman property, denoted (KO), if every ball admits a regular Evans function for \mathcal{H} .

As in [5, Proposition 1, 3], we have the following proposition.

Proposition 8.1. \mathcal{H} satisfies the (KO) condition if and only if \mathcal{H}^+ is locally uniformly bounded (i . e . for every non empty open s e t U in \mathbb{R}^d and for every compact $K \subset U$, there exists a constant C > 0 such that $\sup_K u \leqslant C$ for every $u \in \mathcal{H}^+(U)$.

If \mathcal{H} fulfills the (KO) property, then \mathcal{H} satisfies the Brelot Corollary 8.1. conver - gence property.

Theorem 8.1. Assume that A and B satisfies the following supplementary condi - tio ns

For every $x_0 \in \mathbb{R}^d$, the function F from \mathbb{R}^d to \mathbb{R}^d defined by $F(x) = \mathcal{A}(x, x - x_0)$ is differentiable and div F is locally (ess entially) bounded. i i) $\mathcal{A}(x, \lambda \xi) = \lambda \mid \lambda \mid^{p-2} \mathcal{A}(x, \xi)$ for every $\lambda \in \mathbb{R}$ and e very $x, \xi \in \mathbb{R}^d$.

ii i) $|\mathcal{B}(x,\zeta)| \geqslant b(x) |\zeta|^{\alpha}, \quad \alpha > p-1$

 $L^{d-\varepsilon loc}(\mathbb{R}^d), \quad 0 \quad < \quad \varepsilon \quad < \quad 1, \quad with$

 $\operatorname{ess}_U \inf b(x) > 0$ for every re latively compact U in \mathbb{R}^d .

Then the (KO) property is valid by \mathcal{H} .

Let U be the ball with center $x_0 \in \mathbb{R}^d$ and radius R. Proof. Put $f(x) = R^2 ||x-x_0||^2$ and $g=cf^{-\beta}$, we obtain the desired property if we find a constant c>0such that g is a supersolution of the equation (1.1). We have $\nabla f(x) = -2(x-x_0)$ and $\nabla g(x) = 2c\beta(f(x))^{-(\beta+1)}(x-x_0)$ and then

$$\mathcal{A}(x, \nabla g(x)) = (2c\beta)^{p-1} (f(x))^{-(\beta+1)(p-1)} \mathcal{A}(x, x - x_0).$$

Let $\phi \in \mathcal{C}_c^{\infty}(U), \phi \geqslant 0$ and we set $I_{\phi} = \int \mathcal{A}(x, \nabla g) \nabla \phi dx + \int \mathcal{B}(x, g) \phi dx$, then

$$I_{\phi} = -\int \operatorname{div} \mathcal{A}(x, \nabla g) \phi dx + \int \mathcal{B}(x, g) \phi dx$$

$$= -\int [2(\beta + 1)(p - 1)(2c\beta)^{p-1} f^{-(\beta+1)(p-1)-1} \mathcal{A}(x, x - x_0).(x - x_0)$$

$$+ (2c\beta)^{p-1} f^{-(\beta+1)(p-1)} \operatorname{div} \mathcal{A}(x, x - x_0) - \mathcal{B}(x, g)] \phi dx$$

$$\geqslant -\int [2(\beta + 1)(p - 1)(2c\beta)^{p-1} f^{-(\beta+1)(p-1)-1} \mathcal{A}(x, x - x_0).(x - x_0)$$

$$+ (2c\beta)^{p-1} f^{-(\beta+1)(p-1)} \operatorname{div} \mathcal{A}(x, x - x_0) - c^{\alpha} b f^{-\alpha\beta}] \phi dx$$

$$= -\int [2c^{p-1-\alpha}(2\beta)^{p-1} (\beta + 1)(p - 1) \mathcal{A}(x, x - x_0).(x - x_0)$$

$$+ c^{p-1-\alpha}(2\beta)^{p-1} f \operatorname{div} \mathcal{A}(x, x - x_0) - b f^{\beta(p-1-\alpha)+p}] c^{\alpha} f^{-(\beta+1)(p-1)-1} \phi dx.$$

Putting $\beta = p(\alpha - p + 1)^{-1}$ we obtain

$$I_{\phi} \geqslant -\int [2\binom{2p}{\alpha-p+1})^{p-1} (\alpha^{\alpha+1}_{-p+1})(p-1)\mathcal{A}(x,x-x_0).(x-x_0) + \binom{2p}{\alpha-p+1})^{p-1} f \operatorname{div} \mathcal{A}(x,x-x_0) - c^{\alpha-p+1} b] c^{p-1} f p \alpha^p_{-1-\alpha} \phi dx.$$

EJDE – 2 0 0 1 / 3 1 POTENTIAL THEORY FOR QUASILINIEAR ELLIPTIC EQUATIONS follows from A 2 that $\mathcal{A}(x, x - x_0).(x - x_0)$ is lo cally bounded . Hence if we take

$$c \operatorname{sothat}_{\alpha}^{p-1}{}_{-p+1}$$

$$c \geqslant \left[\sup_{x \in U} \left\{ 2(\alpha_{\alpha}^{+1)(p-1)}{}_{-p+1} \mid \mathcal{A}(x, x - x_0 b_{(x)}^{1,(x)} - x_0) \mid + R^2 \mid \operatorname{div} \mathcal{A}(b_{(x)}^{x,x} - x_0) \mid \right\} \right] 1_{-\alpha p+1}$$

$$\times (\alpha 2^{p}{}_{-p} + 1) p_{\alpha-p+1}^{-1},$$

then $I_{\phi} \geqslant 0$ holds for every $\phi \in \mathcal{C}_{c}^{\infty}(U)$ with $\phi \geqslant 0$. Thus the function $g(x) = c(R^{2} - \| x - x_{0} \|^{2})^{p(p-1-\alpha)}$ is a supersolution satisfying $\lim_{x \to z} g(x) = +\infty$ for every $z \in \partial U$. By the comparison principle we have H $U^{n} \leqslant g$ for every $n \in \mathbb{N}$ and therefore, the increasing sequence $(H_{U}n)_{n}$ of harmonic functions is locally uniformly bounded on U. The Bauer convergence property implies that $u = \sup H_{U}n \in \mathcal{H}(U)$,

n

therefore we have $\lim_{x\to z}\inf u(x)\geqslant n$ for every z in ∂U , thus $\lim_{x\to z}u(x)=+\infty$ for every z in ∂U and u is a regular Evans function . Since U is an arbitrary ball , we get the desired property . \square

Corollary 8 . 2 . Under the assumptions in Theorem 8 . 1 , for every ball B = B (x_0, R)

with center x_0 and radius R and for every $u \in \mathcal{H}(U)$,

$$|u(x_0)| \leqslant cR2^p_{-p1-\alpha}$$

where

$$c = \left[\sup_{x \in B} \left\{ 2(\alpha_{\alpha}^{+1)(p-1)}_{-p+1} \mid \mathcal{A}(x, x - x_0 b_{(x)}^{),(x} - x_0) \mid + R^2 \mid \operatorname{div} \mathcal{A}(b_{(x)}^{x,x} - x_0) \mid \right\} \right] 1_{p_{-\alpha}} + 1 \times (\alpha 2_{-p}^p + 1) p_{\alpha-p+1}^{-1}.$$

Proof. From the proof of the previous theorem, if $B_n = B$ $(x_0, R(1 - n^{-1})), n \ge 2$, we have

$$u(x_0) \leqslant c_n \left(\begin{array}{c} R(n-1) \\ n \end{array} \right) 2^p_{-p1-\alpha}$$

for every $n \geqslant 2$ and

$$c_{n} = \begin{bmatrix} \sup_{x \in B_{n}} \left\{ 2(\alpha_{\alpha}^{+1)(p-1)}_{-p+1} \mid \mathcal{A}(x, -x_{0}b_{(x)}^{).(x} - x_{0}) \mid \right. \\ + \left(\begin{array}{c} R(n-1) \\ n \end{array} \right)^{2} \mid \operatorname{div}\mathcal{A}\binom{x, x}{b (x)} - x_{0}) \mid \}]1_{-\alpha p+1} \left(\begin{array}{c} 2p \\ \alpha - p + 1 \end{array} \right) p_{\alpha - p + 1}^{-1} \\ \leqslant \left[\begin{array}{c} \sup_{x \in B} \left\{ 2(\alpha_{\alpha}^{+1)(p-1)}_{-p+1} \mid \mathcal{A}(x, x - x_{0}b_{(x)}^{).(x} - x_{0}) \mid \right. \\ + R^{2} \mid \operatorname{div}\mathcal{A}\binom{x, x}{b (x)} - x_{0}) \mid \}]1_{-\alpha p+1} \left(\begin{array}{c} 2p \\ \alpha - p + 1 \end{array} \right) p_{\alpha - p + 1}^{-1}. \end{aligned}$$

Then we obtain the inequality

$$u(x_0) \leqslant cR2^p_{-p^{1-\alpha}}.$$

Since -u is a solution of similarly equation, we get

$$-u(x_0) \leqslant cR2^p_{-n^{1-\alpha}}$$

with the same constant c as before. Then we have the desired inequality. \square We now have a Liouville like theorem .

Theorem 8.2. Assume that the conditions in Theorem 8.1 are satisfied and that

$$\lim_{R \to \infty} \inf(R^{-2p} M(R)) = 0$$

where

$$M(R) = \|\sup_{-xx_0\|} \leq R\{2(\alpha_{\alpha}^{+1)(p-1)}_{-p+1} \mid \mathcal{A}(x, x - x_0 b_{(x)}^{),(x)} - x_0) \mid +R^2 \mid \operatorname{div} \mathcal{A}(b_{(x)}^{x,x} - x_0) \mid \}.$$

Then $u \equiv 0$ is the unique s o lutio n of th e equation (1.1) on \mathbb{R}^d . Proof. Let ube a solution of the equation (1, 1) on \mathbb{R}^d . By the previous corollary, we have for every $x_0 \in \mathbb{R}^d$ and every R > 0

$$|u(x_0)| \le [\|\sup_{-x^{x_0}\|} \le R \begin{cases} 2(\alpha+1)(p-1) | \mathcal{A}(x, x-x_0).(x-x_0) | \\ \alpha-p+1 & b(x) \end{cases}$$

 $+R^2 |\operatorname{div}\mathcal{A}(_{b^{-}(x)}^{x,x}-x_0)| \} R^{-2p}] 1_{-\alpha p+1} \begin{pmatrix} 2p \\ \alpha-p+1 \end{pmatrix} p - \min s_{\alpha-p+1}^1.$
Hence $u(x_0) = 0$ and $u \equiv 0$. \square

9. APPLICATIONS

We shall use the previous results for the investigation of the p-minus Laplace $\Delta_p, p \geqslant 2$

which is the Laplace operator if p=2. Δ_p is associated with $\mathcal{A}(x,\xi)=|\xi|^{p-2}\xi$, an easy calculation gives div $\mathcal{A}(x,x-x_0)=(d+p-2)\parallel x-x_0\parallel p-2$. Let , for every $\alpha > 0, \mathcal{H}_{\alpha}$ denote the sheaf of all continuous solution of the equation

$$-\Delta_p u + b(x) \operatorname{sgn}(u) \mid u \mid^{\alpha} = 0 \quad (9.1)$$

$$d$$
 where $b \in L^{d-\varepsilon}_{\operatorname{loc}}(\mathbb{R}^d), b \geqslant 0$ and $0 < \varepsilon < 1$.

Assume that $p \ge 2$. For $\alpha > 0$, let \mathcal{H}_{α} denote the sheaf of Theorem 9.1. al l continuous s o lutio n of th e equation

$$-\Delta_p u + b(x)\operatorname{sgn}(u) \mid u \mid^{\alpha} = 0.$$

where $b \in L^{d-\varepsilon}_{loc}(\mathbb{R}^d), b \geqslant 0$ and $0 < \varepsilon < 1$. Then (1) For every $\alpha > 0$, $(\mathbb{R}^d, \mathcal{H}_{\alpha})$ is a nonlinear Bauer harmonic space with the Brelot convergence Property.

(2) \mathcal{H}_{α} is e l lip ti c for e very $\alpha \geqslant p-1$.

(3) If $\alpha > p-1$ and $\inf_U b > 0$ for every relatively compact open U in \mathbb{R}^d , then the property (KO) is satisfied b y \mathcal{H}_{α} .

(4) If $\alpha > p-1$ and $\inf_{\mathbb{R}} db > 0$, then $\mathcal{H}_{\alpha}(\mathbb{R}^d) = \{0\}$. **9.2.** Let $U \subset \mathbb{R}^d$ be an bounded open s e t whose Theorem can be represented locally as a graph of function with H "" ider continuous derivatives. Assume that $\alpha > p-1$. Then U admits a regular Evans function for \mathcal{H} .

$$\lim_{x \to z} v(x) = +\infty$$
, for every $z \in \partial U$.

Let f in $\mathcal{C}_c^{\infty}(U)$ be a positive function $(f \neq 0)$ and $w \in \mathcal{W}_0^{1,p}(U)$ be the solution of the problem

$$\int_{U} |\nabla w|^{p-2} |\nabla w| \cdot \nabla \phi dx = \int_{U} f \phi dx, \quad \phi \in \mathcal{W}_{0}^{1,p}(U)$$

$$w = 0 \quad \text{on} \partial U$$

By the regularity theory , w has a H \ddot{o} lder continuous gradient , w is continuous supersolution w>0 in $U,\lim_{x\to z}w(x)=0$ for every $z\in\partial U$ and $\parallel w\parallel\infty^+\parallel\nabla w\parallel\infty\to0$ as $\parallel f\parallel\infty\to0$. Then we set $v=w^{-\beta}$ and look for $\beta>0$ and f such that

$$\int_{U} |\nabla v|^{p-2} |\nabla v \cdot \nabla \phi dx + \int_{U} b(x) v^{\alpha} \phi dx \geqslant 0 \quad \phi \geqslant 0, \phi \in \mathcal{W}_{0}^{1,p}(U).$$

For every $\phi \geqslant 0, \in \mathcal{W}_0^{1,p}(U)$, we have

$$\begin{split} \int_{U} \mid \nabla v \mid^{p-2} \nabla v \cdot \nabla \phi dx &= -\beta^{p-1} \int_{U} w^{-(\beta+1)(p-1)} \mid \nabla w \mid^{p-2} \nabla w \cdot \nabla \phi dx \\ &= -\beta^{p-1} \int_{U} \mid \nabla w \mid^{p-2} \nabla w \cdot \nabla (w^{-(\beta+1)(p-1)} \phi) dx \\ &- \beta^{p-1} (\beta+1)(p-1) \int_{U} w^{-(\beta+1)(p-1)-1} \phi \mid \nabla w \mid^{p} dx \\ &= -\beta^{p-1} \int_{U} w^{-(\beta+1)(p-1)-1} [wf + (\beta+1)(p-1) \mid \nabla w \mid^{p}] \phi dx; \end{split}$$

thus

$$\int_{U} |\nabla v|^{p-2} \nabla v \cdot \nabla \phi dx$$
$$+\beta^{p-1} \int_{U} bv(\beta+1)(\beta p-1) + 1 \quad [b^{-1}wf + (\beta+1)(p-1)b^{-1} |\nabla w|^{p}] \phi dx = 0.$$

Put $\beta = p_{\alpha-p+1}$ and choose f such that $wf + (\beta+1)(p-1) \mid \nabla w \mid^p \leq b\beta^{1-p}$. Then

$$\int_{U} |\nabla v|^{p-2} \nabla v \cdot \nabla \phi dx + \int_{U} b v^{\alpha} \phi dx \geqslant 0, \quad \text{for every } \phi \geqslant 0, \phi \in \mathcal{W}_{0}^{1,p}(U);$$

therefore , v is a continuous supersolution of (9 . 1) such that $\lim_{x\to z} v(x) = +\infty$, for

$$every z \in \partial U$$
.

Let u_n denote the continuous solution of the problem

$$\int_{U} |\nabla u|^{p-2} \nabla u \cdot \nabla \phi dx + \int_{U} bu^{\alpha} \phi dx = 0, \quad \phi \in \mathcal{W}_{0}^{1,p}(U)$$
$$u = n \in \mathbb{N} \quad \text{on} \partial U$$

By the comparison principle we have $0 \le u_n \le v$ for all n and by the convergence property, the function $u = \sup_n u_n$ is a regular Evans function for \mathcal{H} and U. \square

Theorem 9.3. Let $\alpha > p-1$ and let U be a star domain and b continuous and s trictly positive function on \mathbb{R}^d . Assume that the conditions in Theorem 9.1 are satisfied. If there exists a regular Evans function u associated with U and \mathcal{H}_{α} , then u is unique.

The proof is the same as in [4] and [6] when $b\equiv 1.$

References

- [1] M . Aisenman and B . Simon , Brownian motion and Harnack inequality for Schr \ddot{o} dinger op erators , Comm . Pure Appl . Math . (1982) , no . 35 , 209 273 .
- [2] N . Bel Hadj Rhouma , A . Boukricha , and M . Mosbah , *Perturbations et espaces harmoniques nonlin* \acute{e} aires , Ann . Academiae Scientiarum Fennicae (1998) , no . 23 , 33 – 58 .
- [3] A . Boukricha , W . Hansen , and H . Hueber , Continuous so lutions of the generalized Schr \ddot{o} dinger equation and perturbation of harmonic spaces , Exposition . Math . 5 (1987) , 97 135 .
- [4] A . Boukricha , Harnack inequality for nonlinear harmonic spaces $\,$, Math . Ann . $\bf 317\,$ (2000) 3 , $\,567-583$.
- $[\ 5\]$ A . Boukricha , Keller Osserman condition and regular Evans functions for s emilinear PDE $\ ,$ Preprint .
- [6] E. B. Dynkin , A pro bab ilistic appraach to one class of nonlinear differential equations , Prob. The . Rel . Fields (1.991) , 89-1.15 .
- [7] F. A. van Gool, Topics in nonlinear potential theory, Ph. D. thesis, September 1992.
- $[\ 8\]\ D\ Gilbarg\ and\ N\ .\ S\ .\ Trudinger\ ,\ \textit{El}\ l\ ip\ tic\ partial\ differential\ equations\ of\ second\ order\ ,\ second\ ed\ .\ ,\ Die\ Grundlehren\ der\ Mathematischen\ Wissenschaften\ ,\ no\ .\ 224\ ,\ Springer\ -\ Verlag\ ,\ Berlin\ ,$

1 983.

- [9] W. Hansen , Harnack inequalities for Schroedinger operators , Ann . Sc . Norm . Super . Pisa , Cl . Sci . , IV . Ser . 28 , No . 3 , 41 3 470 (1 999) . [10] J . Heinonen , T . Kilpl \ddot{a} inen , and O . Martio , Nonlinear potential theory of degenerate el liptic equations , Clarendon Press , Oxford New York Tokyo , 1 993 . [11] M . A . Krasnosel 'ski \check{i} , Topological methods in theory of nonlinear integral equations , Pergamon Press , 1 964 . [12] D . Kinderlehrer and G . Stampacchia , An introduction to variational inequalities and their applications , Academic Press , New York , 1 980 . [13] P . Lehtola , An axiomatic approch to nonlinear potential theory , Ann . Academiae Scientiarum Fennicae (1 986) , no . 62 , 1 42 . [14] J . L . Lions , Quellques m é thodes de r é so lution des problè è mes aux limites nonlin é aires , Dunod Gautheire Villars , 1 969 . [15] O . A . Ladyzhens en ya and N . N . Ural 'tseva , Linear and quasilinear ellip tic equations , Math ematics in Science and Engineering , no . 46 , Academic Press , New York , 1 968 . [16] P . A . Loeb and B . Walsh , The equivalence of Harnack 's principle and Harnack 's inequality in the axiomatic system of Brelot , Ann . Inst . Fourier 1 5 (1 965) , no . 2 , 597 600 .
- [17] Fumi Yuki Maeda , Semilinear perturbation of harmonic spaces $\,$, Hokkaido Math . J . 1 0 (1 98 1) , $\,$ 464 493 .
- [18] J . Mal $\circ y$ and W . P . Ziemmer , Fine regularity of s olutions of partial differential equations , Mathematical Surveys and monographs , no . 5 1 , American Mathematical Society , 1 997 . [1 9] J . Serrin , Local behavior of s olutions of quasilinear equations , Acta Mathematica (1 964) , no . 1 1 , 247 302 . [20] N . S . Trudinger , On Harnack type inequality and their application to quasilinear el liptic equations , Comm . Pure Appl . Math . (1 967) , no . 20 , 721 747 .

AZEDDINE BAALAL

D é partement de Math é matiques et d'Informatique , Facult é des Sciences A \ddot{i} n Chock , Km 8 Route El Jadida B . P . 536 6 M \hat{a} arif , Casablanca - Maroc

E - $mail\ address$: baalal @ facsc - achok . ac . ma

Abderahman Boukricha

D \acute{e} partement de Math \acute{e} matiques , Facult \acute{e} des Sciences de Tunis , , Campus Universitaire 1 0 60 Tunis - Tunisie .

E - $mail\ address$: aboukr i cha @ f st . rnu . tn