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POTENTIAL THEORY FOR QUASILINIEAR ELLIPTIC
EQUATIONS
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DEDICATED TO PROF . WOLFHARD HANSEN ON HIS 60 TH BIRTHDAY
ABSTRACT . ‘We discuss the potential theory associated with the quasilinear
elliptic equation

—div(A(z, Vu)) + B(z,u) = 0.

We study the validity of Bauer convergence property , the Brelot convergence

property . We discuss the validity of the Keller - Osserman property and the
existence of Evans functions .
1. INTRODUCTION This paper is devoted to a study of the quasilinear elliptic equation
—div(A(z, Vu)) + B(z,u) =0, (1.1)

where A : RY x R — R? and B : R? x R — R are Carath ¢ odory functions satisfying the
structure conditions given in Assumptions (I), (A1), (A2),(A3),and (M)
below . In particular we are interested in the potential theory , the degeneracy of the sheaf
of continuous solutions and the existence of Evans functions for the equation (1. 1) .
Equation of the same type as ( 1 . 1) were investigated in earlier years in many
interesting papers , [19,20,15,18]. An axiomatic potential theory associated with
the equation div (A(z,Vu)) = 0 was recently introduced and discussedin  [10] .
These axiomatic setting are illustrated by the study of the p— Laplace equation
Ayu = div (| Vu [P=2 Vu) obtained by A(z, &) =| £ [P~2 £ for every # € R? and ¢ € RY.
We have Ay = A where A, the Laplace operator on R%,

Our paper is organized as follows :  In the second section we introduce the ba -
sic notation . In the third section we present the structure conditions needed for the
mappings A and B in order to consider the equation (1. 1).  We then use the variational
inequality to prove the solvability of the variational Dirichlet problem related to (1. 1) .
In section 4 we prove a comparison principle for supersolutions and subsolutions , existence
and uniqueness of the Dirichlet problem related to the sheaf H of continuous solutions of
(1.1),as well as the existence of a basis of regular sets
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2 A . BAALAL & A . BOUKRICHA EJDE-201/31
stable by intersection . In the fifth section we discuss the potential theory associated with
equation ( 1. 1), prove that the harmonic sheaf H of solutions of ( 1 . 1) satisfies the
Bauer convergence property , then introduce the presheaves of hyper - harmonic functions
*9, and of hypoharmonic functions *™ and prove a comparison principle . In the sixth
section we prove , using the obstacle problem , that %3, and *’ are sheaves . In the
seventh section we study the degeneracy of the sheaf H; we are not able to prove that the
sheaf H is non degenerate even if we have the following Harnack inequality [ 19,20 ,1 8
, 4]

For every open domain U in R? and every compact subset K of U the re exists
two non - negative constants c1 and cy such that for every h € H(U),

sup h < c¢pinf h 4 co.
K K
Let U be an open subset of R% d > 1 and « a positive real number , let 0 < e < 1

d

and b be a non - negative function in L{’O_CE(Rd). For every open U we consider the

set Ho (U) of all functions u € WP (U) NC(U) which are solutions of the equation
(1. 1) with B(z,¢) = b(x) sgn (¢) | ¢ |¥, then (R% H,) is a nonlinear Bauer space . In
particular H,, is non degenerate on R<. For a < p — 1, the Harnack inequality
and the Brelot convergence property are valid , but in contrast to the linear and quasilinear
theory (seee. g . [10])(R? H,) is not elliptic in the sense of Definition 7 . 1 . In the
eighth section , we define , as in [ 5 ] , regular Evans functions u tending to the infinity (
or exploding ) at the regular boundary points of U. We assume that A
satisfies the following supplementary derivability and homogeneity conditions :

e For every zg € R?  the function F from R? to RY defined by F(z) =
A(z,x — xg) is differentiable and div F is lo cally ( essentially ) bounded .

oAz, M) = A | A P72 A(x, &) for every A € R and every z, & € R%.

These conditions are satisfied in the particular case of the p— Laplace operator
with p > 2. We then prove that for every a > p — 1, the Keller - Osserman property in
(RY,H,)isvalid ;i. e. ,every open ball admits a regular Evans function , which yields
the validity of the Brelot convergence property . Among others , we prove for « >p—1 a
theorem of the Liouville type in the form H,(R¢) = {0}. Finally in
the ninth section , we consider some applications of the previous results to the case
of the p— Laplace operator , where we also prove the uniqueness of the regular Evans
function for star domain and strict positive b and H,, for a > p — 1.

Note that our methods are applicable to broader class of weighted equations ( see [ 10
] ) . The use of the constant weight = 1 is only for sake of simplicity .

2. NOTATION

We introduce the basic notation which will be observed throughout this paper . R? is
the real Euclidean d— space ,d > 2. For an open set U of R? and an positive integer
k,C*(U) is the set of all k t imes continuously differentiable functions on an
openset U. C®(U) := (>, C*(U) and C°(U) the set of all functions in C*>*(U) compactly
supported by U.  For a measurable set X, B(X) denotes the set of all
Borel numerical functions on X and for ¢ > 1, L9(X) is the ¢*"— power Lebesgue space
defined on X. Given any set ) of functions Y, (Y™ resp . ) denote the set of all functions
in ) which are bounded ( positive resp .).W4(U) is the (1,q)— Sobolev
space on U. WyY(U) the closure of C2°(U) in W-4(U), relatively to its norm .
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W (U) is the dual of Wel(U), ¢ =q(g—1)"". wAv(resp. wuVwv)isthe
infinimum ( resp . the maximum ) of v and v;u™ =u V0 and u~ = u A 0.
3. EXISTENCE AND UNIQUENESS OF SOLUTIONS
Let © be a bounded open subset of R4(d > 1). We will investigate the existence
of solutions u € W'P(Q),1 < p < d, of the variational Dirichlet problem associated
with the quasilinear elliptic equation

—div(A(z, Vu)) + B(z,u) = 0.

In this paper we suppose that the functions A : R? x R? — R? and B: R%x R — R are
given Carath é odory functions and the following structure conditions are

satisfied :

(I) ¢— B(x,() is increasing and B(x,0) = 0 for every x € R%. ( A 1)  There exists
0 < & < 1 such that for any u € L>(R%),

B(.,u(.)) € LP~elec(RY).
(A 2) There exists v > 0 such that for every £ € R,

| Al &) I<v &P
(A 3) There exists u > 0 such that for every ¢ € R?,

Az, )&= pl €.
(M) Forall & ¢ € RY with € # ¢/,

[A(2,8) — Az, )] - (€= &) > 0.

We recall that assumptions ( A 2 ), ( A3 ) and ( M) are satisfied in the framework
of [ 1 0 ] when the admissible weight is w = 1.
Recall that u € Wllof(Q) isasolution of (1. 1) in( provided that for all ¢ €

WP (Q)andB(.,u) € L¥. (%),

loc

/ Az, Vu) - Vodx —|—/ B(z,u)pdr = 0. (3.1)
Q Q

A function u € Wllof(Q) is termed subsolutions (resp .  supersolutions ) of (1. 1) if

for all non - negative functions ¢ € Wi® () and B(.,u) € LF. (),

loc
Az, Vu) - Védr + | Bz ,u)pdr <0 (resp. > 0).
Q Q

If w is a bounded subsolution ( resp . bounded supersolution ) , then for every k > 0,
u — k( resp .u + k) is also subsolution ( resp . supersolution ) for (1. 1) .
For a positive constant M and u € LP(2), we define the truncated function

-M ulz)<-M
v (u)(z) = braceleftmid — braceleftbt  u(x) — M <u(z) <M
M, M <u(x)

(a.e.x e Q). It is clear that the truncation mapping 7y is bounded and continuous from
LP(Q) to itself .
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B(z,mar(w)) €  LP9%(Q), we define Ly : WHP(Q) —

/
WP (Q)as

(Lar(w), 9) = /Q A, V) - Vi + /Q B, s (u)gdz, ¢ € Wy™(Q)

/

here (.,.) is the pairing between W17 (Q) and WP(Q). It follows from Assump -
tions (A1),(A2),(A3),and the carath é odory conditions that £ is well defined
. We consider the variational inequality

(Ly(u),v—u) 20, YwveKuek, (3.2)

where K is a given closed convex set in WP (x xax<~~x~~<x~1<) such that for given
[ E WP (K xm<mm XN~<K I,

K C f4+ WP (K xm<cmm X\~ <X RI<).

Typical examples of closed convex sets K are as follows : for f € WP (X X<~ X\ ~< K1)
and ¥1,92 : Q — [—00, +00] let the convex set is
Kl ge =K1 o) ={ue WP(Q) ¥l <u<y2a. e. inQu—feW,P(Q)}

(3. 3) We write K, =K/, (Q) and , if f =41 € WP(Q),K; = K5 A
function u satisfying ( 3. 2 ) with M = 400 and the closed convex sets ICQJL1 is called a s 0
lution to the o bstacle pro b lem in lel. For the notion of obstacle problem , the reader
is referred to monograph [10,p. 60]or[18,Chap. 5]. We observe that any
solution of the obstacle problem in /Cil(Q) is always a supersolution of the equation (1 .
1) in Q. Conversely , a supersolution u is always a solution to the obstacle problem in
K¥(w) for all open w C w C Q. Furthermore a solution u to equation (1. 1) in an
open set () is a solution to the obstacle problem in K*__(w) for all open w C w C Q.
Similarly , a solution to the obstacle problem in K* __(€2) is a solution to (1. 1) .

For the uniqueness of a solution to the obstacle problem we have following lemma
[10, Lemma3.22]:
Lemma 3 . 1. Suppose that u is a s o lution to the o bstacle problem in ICg(Q).
If veW"2(Q) s a supersolution of (1. 1 )in € such that uAve K (Q), then
a.e.

u < vinfl.

Theorem 3. 1. Let ¥l and 92 in LP(XXR<~~XN~<EXRI<), f € WP (K X<~ XN~ < KRI<)

and ICfl 5 as a bo ve assume that Kfl o @5 non emply . Then for every positive
constant M, || Y1 oo V || ¥2 |0 € M < 400 th e variational inequality (3. 2
) has a unique s o lutio n . Moreover , if w € WYP(Q) is a supersolution ( resp

subsolution ) to th e equation (1. 1) such that wAu( resp .wVu) € ’Ciwz’ then
u<< w( resp .w < w).
Proof . Let || ¢l ooV |92 oo <M< +4o00. Ifu,ve ICzJ;LW are solutions of (
3.2), it follows from (I )and (M ) that



0 > /Q[A(;v, Vu) — A(z, Vv)] - V(v — u)dz

+/ [B(z,ar(w)) — B(a, 7pr(v))] (v — u)da
Q
= (Lym(u) = Ly(v),v—u) 20,
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then v — u is constant on connected components of €.  This , on the other hand , since
v —u € WyP(Q), implies that v = u.

To prove the existence we will use [ 12, Corollary IIT. 1. 8 ,p. 87]. Since ICiLw2 is
a non empty closed convex subset of WP(Q), it is enough to prove that £j; is monotone
, coercive and weakly continuous on ’Cil,wz- We have

(Ly(u) = Ly(w),u—v) = /Q[.A(:U, Vu) — A(z,Vv)] - V(u — v)dz+

+ / [B(x, mar(w)) — Bz, 7as (v))].(w — v)dx
Q

for allv,u € ’Cil)w and the structure conditions on A and B yield that £); is monotone
and coercive ( for the definition of monotone or coercive operator the

reader is referred to [ 14,1 2] ) .

To show that Ly, is weakly continuous on ’Ci}l,w’ let (up)n C ’Cilﬂﬁ be a se - quence
that converges to u € ’Cil,ﬂﬂ' There is a subsequence (u,, )k such that u,, — u and
Vi, — Vu pointwise a . e. in Q. Since A and B are Carath é odory

functions , A(.,Vu,,) and B(.,7p(un,)) converges in measure to A(.,Vu) and
B(x,ar(u)) respectively [1 1] .  Pick a subsequence , indexed also by ny, such that
A(., Vuy, ) and B(., 7ar(un, )) converges pointwise a . e . in 2 to A(., Vu) and B(z, ps(u))
respectively . Because (up, )n, is bounded in WHP(Q), it follow that (A(., Vuy, ))x is
bounded in (Lj_1(€))d and that A(., Vuy, ) - A(., Vu) weakly in (Ly_1(Q))? We have
also B(., Tas (tn,)) = B(., 7ar(u)) weakly in LP™ (). Since the weak limits are independent
of the choice of the subsequence , we have for all ¢ € W,?(Q)

<'CM (un)a ¢> - <£1M(u)7 ¢>
and hence L, is weakly continuous on ’Cil,w?

Let now w € WHP(Q) be a supersolution of the equation ( 1. 1) such that uAw € ’Cil,wQ’
then u — (u A w) € W, P(Q) and we have

0

N

/Q [A(z, Vw) — A(z, Vu)] - V(u — (u A w))dz+

—|—/ [B(z, mar(w)) — Bz, mar(w))].(u — (u A w))dx
Q

= /{ § }[.A(l‘, V(uAw)) — Az, Vu)] - V(u — (u Aw))dz+

+/ [B(z, mar(u Aw)) — Bz, 7ar (w))].(w — (u A w))dz
{u>w}
< 0.

It follow , by (I ) and (M ), that V(u— (uAw))=0a. e. in Q and hence u < w
a . e. in . The same proof is valid if w is a subsolution . O
As an application of Theorem 3 . 1 , we have the following two theorems . Theorem 3 .
2.  Let feWP(kxm<~~XN~<EIXRII<K) N LP (XK X<~~~ XN ~<XAI<) and

K={ueW" Q) :f<u< |flle a e,u—feWyP(Q)}.
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Then there exists u € K such that

(L(u),v—u) =20 forall vek.
Moreover ,u is a supersolution of (1. 1) in Q. Proof . For m > 0, by Theorem 3 .
1 there exists a unique function u,, in

IC?Hf oo +m ={u e WP(Q): f <u< || f| oo+ mae,u—feWyP(Q)}
such that

<£Hf lloo +m(tm), v — Up) =0

for all v € ICQHf loo +m:  Since upm— || flloo=tm—Ff+=1 fllee < tm—1Ff
and (i — £ > (tm— | £ o), we have 5 := (um— || £ [l)* € WEP(Q)(scc e . g .
[10,Lemmal. 25]). Moreover , since u, —1n € IC]fi”f loo +m and || f || is a
supersolution of ( 1. 1), we have

0 < - / A, Vi) - Vidar — / (B ) — B(x, | £ l|so)nd
- ‘/ | £ Il oo} A, Vi) - Vutnd+

- /{ B ) =BG £ 12t | f o)

< 0
then Vy=0a.e. inQby (M ). Becausene WyP(Q),n=0a.e. nQ It
follows that u,, < || floca.e. inQ. It follows that up, < || flloa.e. in
Q, and therefore f < wu, < || flloo+ma.e. inQ.  Given a non - negative

$ €CX(Q) and e > 0 sufficiently small such that u,, +ec¢ € IC?Hf lloo +m consequently

(L(um),d) =0

which means that u,, is a supersolution of (1. 1)in Q. O Theorem 3. 3. Let Q
be a bounded open s e t of R f e WLP(Q)NL®(Q).  Then
there is a unique function w € WHP(Q) with u — f € Wy (Q) such that

/ Az, Vu) - Vodx —|—/ B(x,u)pdx = 0,
Q Q
wheneverg € Wy ().

Proof . For m > 0, by Theorem 3 . 1, there exists a unique u,, in

Kim = {ueWPQ):|ul< | f| oo+ mae,u—feWy ()},

such that

<£Hf ||OO +m<um)7v - um> 2 0,
for allv € Kppme Sincetum+ || flloeo = Um—f+f+]flloe = un—f and
(= f)" < (um+ || flod A0, wehave = (um+ || f ) AOE  WyP(Q) (

see
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g. [10,Lemmal. 25]). Moreover , since 1+ uy, € Kfm and — || f || 0o is a
subsolu -

tionof (1. 1), we have

0 < /Q A, V) - Vidar + /Q [B(z, i) — B, — || £ lloo)]nda:
_ _/{ 1 F o) A, V) - Vudat
- /{ o B = B = | f et £ )i

< 0

then Vp=0a.e. inQby (M ). Becausenec Wy?(Q),n=0a.c. inQ Tt
follows that — || f || co <um a.e. in Q. Note that —u,, is also a solution in K_;,,
of the following variational inequality

(E ooty —uy = / A, V) - V(o — u)dz
Q

—|—/ é(a:,7'|‘f‘|oo+m(“))(v —u)dx = 0,
Q

where A(.,6) = —A(,—€) and B(,¢{) = —B(,—() which satisfy the same
as - sumptions as A and B. It follows that u,, < || flle a.e. in€Q, and
therefore

|um |< || flloo+ma.e. inQ. Given ¢ € C(2) and € > 0 sufficiently small such

thatu,, £ e¢ € Ky ,, consequently
(L(um),d) =0

which means that u,, is a desired function . O

By regularity theory (e. g. [18, Corollary 4. 10] ), any bounded solution of (
1. 1) can be redefined in a set of measure zero so that it becomes continuous .
Definition 3 . 1. A relatively compact open set U is called p — regularity if , for
each function f € WHP(U) N C(U), the continuous solution w of (1. 1) in U with
u— f € WHP(U) satisfies lim, ., u(z) = f(y) for all y € OU.

A relatively compact open set U is called regular , if for every continuous function f
on OU, there exists a unique continuous solution w of (1. 1) on U such that

lim u(x) = f(y)forally € OU.
Ty
If U is p — hyphen regular and f € WP (U)NC(U), then the solution u given by Theo
- rem 3 . 3 satisfies

i u(z) = f(2)
for all z € 9U[18, Corollary 4 . 18] .
4. COMPARISON PRINCIPLE AND DIRICHLET PROBLEM
The following comparison principle is useful for the potential theory associated
with equation (1. 1): Lemma 4 . 1. Suppose that wu is a supersolution and v is
a subsolution on ) such
that



lim sup v(z) < lim inf u(z)
Ty Ty
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the inequality are not s imultaneously +oo o r

—00, thenv < uinfl.

Proof . By the regularity theory (seee. g. [18, Corollary 4. 10] ), we may
assume that u is lower semicontinuous and v is upper semicontinuous on 2.  For fixed
e>0,theset K. = {ze€Q:v(x)>u(x)+c}isacompact subset of @ and therefore

¢=(v—u—e)t € WyP(R?). Testing by ¢, we obtain

/ [A(z,V(u+¢)) — Az, Vv)] - Vodz
{v>u+e}

+/ [B(z,u+e) — B(z,v)|¢pdz > 0 (4.1)
{v>u+te}

Using Assumptions ( I') and ( M ) we have

/ [A(z,Vu+¢e) — A(z, V)] - V(v —u —e)dz =0
{v>u+e}
and again by M we infer that v < u+ ¢ on Q. Letting e — 0 we have v < u on

Q. O

Theorem 4 . 1. Every p— regular s e t is regular in the s ense of definition 8. 1 .
Proof . Let  be a p— regular set in R? and f be a continuous function on 9€2. We
shall prove that there exists a unique continuous solution u of (1. 1) on Q such that
lim,_,, u(z) = f(y) for all y € Q. The uniqueness is given by Lemma 4 . 1. By [ 18,
Theorem 4 . 1 1] we have the continuity of u. For the existence , we may suppose that

f € C.(R?)( Tietze ’ s extension theorem ) .  Let fi be a sequence of functions from
CL(R?) such that | fi— f| <2 %and|fi|+|f| < M onQ for the same constant M
and for all i.  Let u; € WHP(Q) N C(Q) be the unique solution for the Dirichlet problem
with boundary data fi( Theorem 3 . 3 ).  Then from Lemma 4 . 1 we deduce that
lui—uj| < 2774277 and |u;| < MonQforalliandj. We denote by u
the limit of the sequence (u;)i. We will show that u is a lo cal solution of the equation
. For this , we prove that the sequence (Vu;)i is lo cally uniformly bounded in (LP(£2))%.
Let ¢ = —nPu;,n € C*(N),0<n<landn=1onw Cw C .

Since ¢ € Wy (Q), we have

0 = /A(x,Vui)~V¢dm+/ B(z,u;)pdx
Q Q
= /A(m,Vui).(—anui — puin®~*Vn)dx — / nPB(x, u;)u;dx
Q Q
s _M/ | Vg 7 dmﬂ’”/ P Vg [P g || Vi [ de + C(M || 9 [loc, | 1),
Q Q
and therefore , using the Young inequality , we obtain
/ n? | Vu; |P dz
Q
< papvl’*/ n’ | Vu; [P dz + Vpazm/ | ui [P] Vi [P da + C(M, || 7 [loo, | 2 1)
Q Q

< Vs [V lP o COLL 0 s |21 91 ).
Q
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If0 < e < ( p‘;ll )p—pl,then
[ 1905 P d < L e P 90, foralt.

It follows that the sequence (u;)i is lo cally uniformly bounded in WYP(Q). Fix D €
Ge& Q. Since (u;)i converges pointwise to w and by [10, Theorem 1. 32],
we obtain that u € WYP(D) and (u;)i converges weakly , in WYP(D), to u. Let n €
C°(G) such that 0 < < 1,7 =11in D and testing by ¢ = n(u — u;) for the

solution u;, we have

—/ nA(z, Vu;) - V(u — u;)dz
G

= / (u—w;) Az, V) - Vndx + / Bz, u;)(u — u;)dz
G G

< </G|u—ui |pdw>1/p[c+u</g|w P de)p — pl]

< o lu—updop
G

Since
0 < / Az, Vi) — A, Vi) - V(u — wi)da
D

< /GT].A(x,Vu) - V(u—ui)d:ﬂ—i-C’(/G | w—wu; |Pde)l/p

and the weak convergence of (Vu;)i to Vu implies that

lim [ nA(z,Vu)-V(u—u;)dx =0,
11— 00 G
we conclude
lim | [A(z,Vu) — A(z, V)] - V(u — u;)de = 0.
11— 00 D

Now [10, Lemma3. 73] impliesthat A(z,Vu;) converges to A(z, Vu) weakly in

(LP (D))"

Let ¢ € C§°(G). By the continuity in measure of the Carath é odory function
B(z,z) [11] and by using the domination convergence theorem ( in measure ) , we have

lim B(x,ui)wdm‘:/l’j’(x,u)wdm.
Q

Finally we obtain

0 = lim [gf)A(x,Vui)-Vz/de—i—/ B(x, u;)dz]
Q

11— 00

= /.A(x,Vu) : Vz/)dx—l—/ B(z, u)pd.
Q Q

By an application of [ 1 8 , Corollay 4 . 1 8 | for each u; we obtain



r e lim wu(x)
Qr—z

fi(2)
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estimation , of u on all ,

w; — 27 < u < uy + 2" Horalli

we deduce that for all ¢

filz) — 27 < @ = S u(z) < @ > S u(z) < filz) + 27

Letting ¢ — oo we obtain

lim u(x) = f(z)

r—rz
for all z € 02 which finishes the proof . O
Corollary 4 . 1. There exists a basis V of reqular s e ts which is s table by inters

ection i. e. forevery U and V in V, we have UNV € V.
The proof of this corollary can be found in Theorem 4 . 1 and [ 1 0, Corollary 6 . 32 ]

For every open set V and for every f € C(0V) we shall denote by Hy f the
s o lutio n of th e Dirichlet problem for the equation (1. 1) on V with the boundary
data f.
5. NONLINEAR POTENTIAL THEORY ASSOCIATED WITH THE EQUATION (1. 1)
For every open set U we shall denote by U(U) the set of all relatively compact open
regular subset V in U with V C U.

By previous section and in order to obtain an axiomatic nonlinear potential
theory , we shall investigate the harmonic sheaf associated with ( 1. 1) and defined as
follows : For every open subset U of R¥(d > 1), we set

HU) = {ueCU)NWLP(U): uis a solution of (1.1)}

loc

= {ueC(U): Hyu = uforeveryV e U(U)}.

Element in the set H(U) are called harmonic on U.

We recall (see [4]) that (X, H) satisfies the Bauer convergence property if for
every subset U of X and every monotone sequence (hy,), in H(U), we have h =
lim,, o by, € H(U) if it is lo cally bounded .

Proposition 5. 1. Let be U an open subset of RY.  Then every family F C H(U)
of locally uniformly bounded harmonic functions is equicontinuous .

Proof . Let V. ¢ V <C Uandafamily F C H(U) of lo cally uniformly
bounded

harmonic functions .  Then sup {J u(z) |z €V andue F} < oocandby [18],
is equicontinuous on V. [

Corollary 5.1. We have the Bauer convergence properties and moreover every
locally bounded family of harmonic functions on an open s e t is relatively compact .
Proof . Let U be an open set and F a lo cally bounded subfamily of H(U). By
Proposition 5 . 1, there exist a sequence (uy, ), in F which converge to v on U lo cally
uniformly . Let now V € U(U). For every € > 0, there exists ng € N such that
u—e < u, < ute forevery n > ng.  The comparison principle yields therefore (Hyu)—e <
un < (Hyu) + ¢, thus (Hyu) —e < u < (Hyu) + €. Letting € — 0, we

getu = Hyu. 0O
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Proposition 5 . 2. [4] Let V a regular subset of R and le t (fn)n and f in
c(ov)

such that (fn)n is a monotone s equence converging to f. Then sup,, Hy f, converge

tOHV f

Proof . Let V a regular subset of R? and let (f,), and f in C(V) such that (f,), is
increasing to f. Then , by Lemma 4 . 1, we have

sup Hy fp, < Hy f
n

and , by Corollary 5.1sup, H Vf,, € H(V). Moreover , For every n and every z € OV we
have

fn(z) < lim inf(sup Hy f,(z)) < ;;rri sup(sup Hy fn(2)) < f(2).

T—z

Letting n tend to infinity we obtain that

f(z) = liin sup Hy fn) ().

T2z g

By Lemma 4 . 1, this shows that in fact H V f =sup,, Hv f,. An analogous proof can
be given if (fy), is decreasing .

O

Corollary 5 . 2. [4] Let V be a regular subset of RY and (f,)n and (gn), to s
equences in C(OV) which are monotone in the same s ense such that lim,, f, = lim, gn.
Then

lim Hy f,, = lim Hy gn.

Proof . We assume without loss the generality that (f,) and (gn) are both increasing .
Obviously , Hy (gn A fm) < H Vgn for every n and m in N, hence sup,, Hy (gn A f,) <
sup,, Hy gn for every m.  Since the sequence (gn A fp,), is increasing to f,,, the previous
proposition implies that H V f,,, < sup,, Hygn. We then have sup,, Hy f,, <
sup,, H Vgn. Permuting (f,) and (gn) we obtain the converse inequality . O

Let V be a regular subset of R?.  For every lower bounded and lower semicon - tinuous
function v on OV we define the set

Hyv =sup {Hvy fy : (fn)n in C(OV) and increasing to v}.

n

For every upper bounded and upper semicontinuous function v on 90V we define
Hyu=inf,{Hy f, : (fn)n in C(OV') and decreasing to u}.

Let be U an open set of R%. A lower semicontinuous and lo cally lower bounded function
u from U to R is termed hyperharmonic on U if Hyu < uw on V for all V' in U(U).
A upper semicontinuous and lo cally upper bounded function v from U to R is termed
hypoharmonic on U if Hyu > won V for all V in U(U). We will
denote by x3,(U)( resp . ™ (U)) the set of all hyperharmonic ( resp . hypoharmonic )
functions on U.



For u € asteriskmath — H(U),v € *™*(U) and k > 0 we have u + k € x4 (U) and
v—k e xU).
Indeed , let V € U(U) and a continuous function such that g < u + &k on 9V, then
Hy(g—k) < Hyu < u. Since (Hyg) — k < Hy (g — k), we therefore get Hyg < u+k

andthusu + k € *4(U).

We have the following comparison principle :
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Lemma 5 . 1. Suppose that u is hyperharmonic and v is hypoharmonic on an open
set U. If

inf u(x)
lim supwv(z) < lim
Usx—y Usx—y

for all y € OU and if both s ides of the previous in equality are not s imultaneously +oo
or —oo, then v<uin U
The proof is the ssame asin [10,p. 133].
6. SHEAF PROPERTY FOR HYPERHARMONIC AND HYPOHARMONIC FUNCTIONS
For open subsets U of R?, we denote by S(U) (resp. by S(U)) the set of all
supersolutions ( resp . subsolutions ) of the equation (1. 1) on U.
Recall that a map § which to each open subset U of R assigns a subset §(U)
of B(U) is called sheaf if we have the following two properties :
( Presheaf Property ) For every two open subsets U, V of R? such that U CV,

V) U CF(U)

( Localization Property ) For any family (U;);ecs of open subsets and any numerical
function h on U = {J;c; Ui, h € F(U) if hyy, € F(U;) for every i € I.

icl
An easy verification gives that S and S are sheaves .  Furthermore , we have the
following results which generalize many earlier [17,2,7,10].
Theorem 6 . 1. Let U be a non empty open subset in R% and u € asteriskmath —

HU)NBy(U). Then wu is a supersolution on U.

Proof . First , we shall prove that for everyopen O C O C U, there exists
an increasing sequence (u;)¢ in in O of supersolutions such that u = lim; o u; on O.

Let (¢4)i be an increasing sequence in C°(U) such that u = sup; ¢i on O.  Let u; be the
solution of the obstacle problem in the non empty convex set

Ki={veWr?(0):¢i<v< | ¢iloot | pi+1] oo andv—¢ic Wy (O)}.

The existence and the uniqueness are given respectively by Theorem 3 . 1 ; moreover is a
supersolution ( Theorem 3 . 2 ).  Since u;41 is a supersolution and u; A u;11 € K;, we
have u; < u;4+1 in O. We have to prove that the sequence (u;)i is increasing to u. Let g
be an element of the open subset G; := {z € O : ¢i(x) < u;(x)} and w be a domain such
that 29 € w C w C G;. Since for every ¢ € C°(w) and for sufficiently

small | € | u; £ e € K,

/ Az, Vu;) - Vibdx + / B(x,u;)pdx = 0.

Then wu; is a solution of the equation ( 1. 1) on w and by the sheaf property of H, u; is a
solution of the equation ( 1. 1) on G;. Now the comparison principle implies

that u; < u on Gj, hence ¢i < u; < u on O and therefore u = sup, u;. Finally , the
boundedness of the sequence (u;)i and the same techniques in the proof of Theorem

4 . 1 yield that (u;)i is lo cally bounded in WP(O) and that u is a supersolution of the
equation (1.1)in 0. O

Corollary 6 . 1. Let U be a non empty open subset in R and u € Wllof(U) Ny (U).
Then w is a supersolution on U.  Moreover the infinimum of two supersolutions is

als 0 a supersolution .
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Let u € WEP(U) Ny (U).  The Theorem 6 . 1 implies that u A n is a super -

loc
solution for all n € N, consequently we have for every positive ¢ € C°(U)

0 < /A(I,V(u/\n))~v¢dx+/B(x,u/\n)gbdz
U U

U

= / Az, Vu) - Vodz + / B(x,u A n)odx.
{u<n}

Letting n — 400 we obtain

Oé/A(z,Vu)~V¢d:c+/ B(z,u)pdz
U U

for all positive ¢ € C°(U), thus u is a supersolution . Moreover , if u and v are two
supersolutions then u A v € WLP(U) N asteriskmath — H(U) so u A v is a supersolution
g

Theorem 6.2. asteriskmath — H is a sheaf .

Proof . Let (U;)i € I be a family of open subsets of R, U = | J
h € asteriskmath — H(U;)

for every ¢ € I. Then by the definition of hyperharmonic function , we have h An €
asteriskmath — H(U;) for every (i,n) € I x N and by Theorem 6.1, h An is a supersolution
on each U;.  Since § is a sheaf , we get hAn € S(U) C #%(U). Thus h=sup,, hAn €
asteriskmath — H(U) and %y is a sheaf . O

Remark 6. 1. For every open subset U of R, let H (U) denote the set of all
uw e WYP(U) N C(U) such that B(z,u) € LP'%°(U) and

e Ui and

/ A(z, V) ~Vq§da:+/ B(z,u)pdz =0
U U

for every ¢ € VV&”)(U)7 where E(x,() = —E(m, —(). Tt is easy to see that
the mapping ¢ — B(z,() is increasing and that u € H(U) if and only if —u € H(U).
Furthermore H and H have the same regular sets and for every V € U(U) and f €
C(8V) we have Hyf = —HV(—f). It follows that u € *™(U) if and only if —u €
asteriskmath — H(U) and therefore 7t is a sheaf .
7. THE DEGENERACY OF THE SHEAF H

As in the previous section we consider the sheaf H defined by ( 1. 1) . Recall that

the Harnack inequality or the Harnack principle is satisfied by H if for every domain

U of R? and every compact subset K in U, there exists two constants ¢; > 0 and
¢ > 0 such that for every h € HT(U),

sup h(z) < ¢ inf h(z) + 2 (HI)
€K zeK

We remark that , if for every A > 0 and h € H*(U) we have Ah € HT(U), then we can
choose c; = 0 and we obtain the classical Harnack inequality .

The Harnack inequality , for quasilinear elliptic equation , is proved in the funda -
mental tools of Serrin [ 1 9], see also [ 20, 1 3] . For the linear case see [9,3,1,8].

In the rest of this section , we assume that B satisfy the following supplementary
condition .

d
(¥)  There exists b € LY °(R%),0 < € < 1, such that | B(z,{) | <b(x) || for

loc

everyz € R%and¢ € R.
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Small powers (0 < a <p—1). We have the validity of Harnack principle given by the
following proposition .

Proposition 7. 1. Let H be the sheaf of th e continuous s o lutions of the equation
(1.1). Assume that the condition (x) s satisfies with 0 < a <p—1. Then
the Harnack principle is satisfied by H.

The proof of this proposition can be foundin [18 ,p. 178]or[19]
Definition 7 . 1. The sheaf H is called elliptic if for every regular domain V in R,
rxeVand feCT(OV),Hy f(x) =0 if and only if f = 0.

In the following example , we have the Harnack inequality but not the ellipticity . This
is in contrast to the linear theory or quasilinear setting of nonlinear potential
theory given by the A— harmonic functionsin [1 0] .
Example 7. 1. We assume that B(z,{) =sgn ({)|¢|*with0 <a <p-1
and
Az, &) =| £ P72 €. Let u = cr® with 3 =p(p—1—a)~! and

c= pppillfa(p —1—a)pp_1_ald(p—1—a)+aplp—1La.

With an easy verification , we will find that for every zo € R% and ball B (x0, p),

there exists a solution u( in the form c || z — x¢ || 8) on B (o, p) such that Apu = u®
with u(z9) = 0 and u(x) > 0 for every z € B (zg, p) \ {zo}. We therefore obtain that the
sheaf H is not elliptic and curiously we have the existence of a basis of regular set ¥V such
that for every V' € V, there exist 29 € V and f € C(0V) with f > 0 on

OVandHy f(xg) = 0.

We will prove that the sheaf given in the previous example is non - degenerate in the
following sense :
Definition 7T.2. A sheaf H is called non - degenerate on an open U if for every
x € U, there exists a neighborhood V of x and h € H(V) with h(z) # 0.
Proposition 7. 2.  Assume that th e condition (x) s satisfies with 0 < a <p—1
and A(z,\6) = M| A|P72A(,€) forall 2,6 €R? and forall X€ R. Then
the
sheaf H is non degenerate and more we have : for every reqular s et V and x €V,

sup h(z) = +oo.
heH (V)

Proof . It is sufficient to prove that for every zp € R% p > 0,n € N and u, =
Hp(z,,0) We have u,, converges to infinity at any point of B (2, p). The comparison
principle yields that 0 < u, < non B (zg, p). Put w, = nv,, we then obtain :

/ A(z, Vv, ) Vodr +n'™P / B(z,nv,)¢dr =0

for every ¢ € C°( B (zo,p)) and for every n € N*. The assumptions on B yields

lim [ A(z,Vv,)Védr = 0;

n—roo

since 0 < v, < 1, we have

[n'"PB(xz,nv,)| < n®PTb(x) < b()

and by [ 1 8 , Theorem 4.19],v,, are equicontinuous on the closure B, , of the ball B
(0, p), then by the Ascoli ’ s theorem , (vy,), admits a subsequence which is uniformly
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convergent on By, , to a continuous function v on By, ,. Further we can easily verify

1
that v € W,.’( B (o, p)) and

loc

/.A(x, Vu)Veodr =0

for every ¢ € Wolp( B (zo,p)). Sincev= 1ondB (zg,p),v= 1lon B, , The
relation w,, = nv,, yields the desired result . [

Big Powers (a >p—1). We shall investigate (1. 1) in the case o > p— 1. Let H be
the sheaf of the continuous solutionsof (1. 1) . In[18]or[19], we find the following
form of the Harnack inequality .

Theorem 7 . 1. Assume that th e condition (%) is satisfies with « = p—1. Then For
every non empty open s et U in R4, for every constant M > 0 and every compact K
in U, th ere exists a constant C = C(K, M) > 0 such that for every u € HT(U)

withu < M,

supu < Cinf u.
K K

Corollary 7. 1. If the condition (x) is satisfies with « > p—1, then H is non -

degenerate and e [ lip tic . Moreover , for every domain U in R and u € HT(U),
we have e ither w>0on Uor u=0on U.
Remark 7. 1. If @ = p — 1, the constant in Theorem 7. 1 does not depend on M

and we have the classical form of the Harnack inequality .

We recall that a sheaf H satisfies the Brelot convergence property if for every
domain U in R? and for every monotone sequence (h,,), C H(U) we have lim,, h,, €
H(U) if it is not identically +oo on U.

Using the same proof as in [ 4 | , we have the following proposition .
Proposition 7. 3. If the Harnack inequality is satisfied by H, th en the convergence
property of Brelot is fulfilled by H.

Remark 7. 2. In contrast to the linear case (s ee [16] ) the converse of Proposition
7. 3 ismnot true (s ee [5] ) and hence the validity of the convergence property of
Brelot does not imply the validity of the Harnack inequality .

An Application . Let H,, be the sheaf of all continuous solution of the equation

—divA(z, Vu) + b(x)sgn(u) | u |[*=0
whereb € L ¢1¢(RY), b > 0and0 < € < 1.

Theorem 7 . 2. a)Foreach 0<a<p—1, (RY4H,) isa Bauer harmonic
space satisfying th e Brelot convergence property , but it is not ellip ti cin
the s ense of Definition 7. 1 .
b ) For each o > p—1,(R% H,) is a Bauer harmonic space e | lip ti c in the s ense of
Definition 7. 1 and the convergence property of Brelot is fulfilled by Hy,—1.
8 . KELLER - OSSERMAN PROPERTY

Let H be the sheaf of continuous solutions related to the equation ( 1. 1) . Definition
8.1. Let U be a relatively compact open subset of R%. A function
u € HT(U) is called regular Evans function for H and U if limg(fi _,, = +oo for
every regular point z in the boundary of U.

For an investigation of regular Evans functions see [ 5 | .
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Definition 8 . 2. We shall say that H satisfies the Keller - Osserman property , de -
noted ( KO ) , if every ball admits a regular Evans function for #.

Asin [ 5, Proposition 1. 3], we have the following proposition .
Proposition 8.1. H satisfies the ( KO ) condition if and only if H7T is locally uni -
formly bounded (i . e . for every non empty open s et U in R? and for every compact
K C U, th ere exists a constant C > 0 such that supg u < C for every u e HT(U)).
Corollary 8 . 1. If H fulfills the ( KO ) property , th en H satisfies th e Brelot
conver - gence property .

Theorem 8 . 1. Assume that A and B satisfies the following supplementary condi
- tio ns
i) For every x¢ € R%, the function F from R? to RY defined by
F(z) = A(x,x —x0) s differentiable and div F is locally ( ess entially ) bounded .
ii) A@ M) =X | A |P~2 A(w,€) for every A € R and e very z,¢ € RY.
ii) | B(z,¢)| = bx)||* a >p—1 where
be LicloeRd), 0 < e < 1, with
essy inf b(z) > 0 for every re latively compact U in R9,
Then the ( KO ) property is valid by H.

Proof . Let U be the ball with center 2y € R? and radius R. Put f(z) = R?—

| # — 0 ||? and g = cf~#, we obtain the desired property if we find a constant ¢ > 0
such that g is a supersolution of the equation ( 1. 1) . We have V f(x) = —2(z — ()
and Vg(z) = 2¢8(f(x))~ B+ (2 — 2¢) and then

Az, Vg(x)) = (2¢8)P~ (f(2)PHDED Az, 2 — x).

Let ¢ € C°(U),¢ = 0 and we set Iy = [ A(x, Vg)Vodx + [ B(z, g)pdz, then
I, = —/div.A(:c,Vg)qum + /B(x7g)¢dm
_ /[2(5 1) (p— 1)(2eBP " EFEDT A (g 0 — ). (2 — o)
+(2eB)P PPV divA(z, @ — 20) — Blw, g)]¢dx
Z - /[2(5 +1)(p— 1)(2ep)P 1 EEDEDT A, 2 — 20).(z — o)
+(2¢B)P BV iy A(z, 2 — x0) — bf ~F|pda
_ /[2cp‘1‘“(2ﬁ)p‘1(ﬁ +1)(p — DA, 2 — o). (x — 0)
+cp_1_a(25)p_1fdiVA(x, T —xp) — bfﬁ(p_1_“H‘p]co‘f_(’gﬂ)(p_l)_l(bdx.

Putting 3 = p(aw — p+ 1)~ we obtain
lo > = [ @) - DAG e - a0). (o - a0)

+(CP )P fdivA(z, @ — x0) — TP P fpal | agde.



EJDE-2001/31  POTENTIAL THEORY FOR QUASILINIEAR ELLIPTIC EQUATIONS 17 It
follows from A 2 that A(z,z — z¢).(x — x) is lo cally bounded . Hence if we take

csothat?™' )

e [asup{2(of VP i | Al — aob) 1S —a0) | +R7 | divAG T —20) D1 p1

X (0421113 + 1)p;£p+15

then I, > 0 holds for every ¢ € C2°(U) with ¢ > 0. Thus the function g(x) =
c(R?~ || x —xo ||2)P®~17%) is a supersolution satisfying lim,_,, g(z) = +oo for every
z € OU. By the comparison principle we have H U™ < g for every n € N and
therefore , the increasing sequence (Hyn), of harmonic functions is lo cally uniformly
bounded on U. The Bauer convergence property implies that u = sup Hyn € H(U),

n

therefore we have lim,_,, inf u(x) > n for every z in U, thus lim,_,, u(x) = 400 for every
z in QU and wu is a regular Evans function . Since U is an arbitrary ball , we get the desired
property . O

Corollary 8 . 2. Under the assumptions in Theorem 8 . 1, for every ball B =B
(l‘o, R)

with center xo and radius R and for every u € H(U),

| ulwo) [< cR2Y,
where

c= [S}elg{Q(oé;rl)(p—l)7p+1 | A(z,z — a:obz‘m()z —x0) | +R? | divAGy () — o) M1, +1
x

—1
X (22, + )it 1.

Proof . From the proof of the previous theorem , if B, = B (29, R(1 —n~1)),n > 2,
we have

u(zo) < e < R(n —1) > P

n

for every n > 2 and

su
I P ]

(n—1) 2p _
w( ) avAGEy — o) M-t (7 )palm
<

sup _
L {2 | Al — bl — a0)

. T,r 2p _
+R2 | leA(b (x) — SC()) |}]1_ap+1 < a _p+ 1 >paip+1.

Then we obtain the inequality

u(zo) < cR2Y | _q.

Since —u is a solution of similarly equation , we get

—u(zo) < cR2Y |,
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with the same constant ¢ as before . Then we have the desired inequality . [0 We now
have a Liouville like theorem .

Theorem 8 . 2. Assume that the conditions in Theorem 8 . 1 are satisfied and that

lim inf(R~*M(R)) =0

R—o0
where
MR = | sup < ROV s | Az —aub§ —ao) | +8 | 4vAG T o) |-
— .%o
Then wu =0 is the unique s o lutio n of th e equation (1. 1 ) on R?. Proof . Let u

be a solution of the equation (1. 1) on R%. By the previous corollary ,
we have for every zo € R? and every R > 0

|u(zo) | < [jsup <R

_szH

20a+1)(p—-1) | Az, — x0).(x — z¢) |
a—p+1 bz)

. z _ 2 .
+R? | divA(y () — o) IR P01 ( N 75+ 1 )p — Minusy, 1 -

Henceu(zo) = O0andu =0. O

9. APPLICATIONS
We shall use the previous results for the investigation of the p — minus Laplace
Ap,p =2
which is the Laplace operator if p = 2. A, is associated with A(xz, &) =| £ [P72 &,
an easy calculation gives div A(z,x —x0) = (d+p—2) || x —xo | p — 2. Let , for every
a > 0,H, denote the sheaf of all continuous solution of the equation

—Apu+b(x)sgn(u) |u |*=0 (9.1)
d
whereb € L% ¢(RY),b > 0and0 < £ < 1.

loc

Theorem 9 . 1. Assume that p>2. For a>0, let H, denote the sheaf of
al I continuous s o lutio n of th e equation

—Apu+b(x)sgn(u) | u |*=0.
d
where b€ L (RY),b>0and 0<e<1. Then
(1) Forevery a>0, (R*H,) isa nonlinear Bauer harmonic space with the
Brelot convergence Property .
(2) Hoisellipticforevery az=p—1.
(3) If a>p—1and infyb > 0 for every relatively compact open U in R?, then
the property ( KO ) is satisfied by He.
(4) If a>p—1and ,infgdb >0, th en H,(RY) = {0}.
Theorem 9. 2. Let U C R% be an bounded open s e t whose boundary
, OU, can be represented locally as a graph of function with H 6 lder continuous
derivatives . Assume that « > p—1. Then U admits a regular Evans function for H.
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We first prove the existence of a continuous supersolution v on U such that

lim v(z) = +o0, foreveryz € OU.

T—z

Let f in C2°(U) be a positive function (f # 0) and w € Wy (U) be the solution of the
problem

/ | Vw P72 Vw - Voda :/ fodz, ¢ e Wyr(U)
U U
w=0 ondU

By the regularity theory ,w has a H 6 lder continuous gradient ,w is continuous super-
solution w > 0 in U, lim,_,, w(z) = 0 for every z € U and | w || co" || Vw || co —
Oas | f |l oo — 0. Then we set v = w™" and look for 3 > 0 and f such that

/U | Vv [P72 Vo - Voda + /U b(z)v“pdz >0 ¢ > 0,6 € WyP(U).
For every ¢ > 0,€ Wy*(U), we have
/U | Vv [P72 Vo - Vodz = —5?*1/Uw*</”1><1’*1> | Vw P72 Vw - Vodz
= —ﬁp—l/U | Vw [P=2 Vo - V(w~ B0 gy
BB+ D - 1) /U w™ B | Ty [P da

== [ W g 4 (3 )= 1) | Vo Plodes

thus

/ | Vo \p_Q Vv - Vodzx
U
+ﬂp71/ bo(B+D(gp—1)+1 b lwf+(B+1)p-1)b"" | Vw Plpde = 0.
U
Put 8 = pa—p+1 and choose f such that wf + (8+ 1)(p— 1) | Vw [P< b3'7P. Then

/ | Vo |P~2 Vo - Vdz +/ bwpdx >0, foreveryg > 0,¢ € WyP(U);
U U

therefore , v is a continuous supersolution of ( 9 . 1) such that lim,_,, v(z) = 400, for

everyz € QU.

Let u,, denote the continuous solution of the problem

| 19up u- oo+ [ s =0. o ewrw)

u=n¢cN onoU

By the comparison principle we have 0 < u,, < v for all n and by the convergence
property , the function u = sup,, u,, is a regular Evans function for H and U. O



Theorem 9. 3. Let a>p—1andlet U be a s tar domain and b continuous and
s trictly positive function on RY.  Assume that th e conditions in ~ Theorem 9 . 1 are
satisfied . If th ere exists a reqular Evans function wu associated with U and H,, then
U 1S UNLQqUE .

The proof is the same asin [4 ] and [ 6 | when b= 1.
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