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Abstract

In this paper the conditions of occurrence of quasi-periodic (QP) solutions and bursting dynamics in a self-excited

quasi-periodic Mathieu Oscillator are discussed. The quasi-periodic excitation consists of two periodic excitations; one

with a very slow frequency and the other with a frequency resonant with the proper frequency of the oscillator. The fast

dynamics are initially averaged. The complimentary quasi-static solutions of the modulation equations of amplitude

and phase are determined and their stability is analyzed. Numerical simulations and power spectra are shown to com-

plete the theoretical analysis.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Quasi-periodically forced systems are systems that are influenced by two periodic signals with incommensurate fre-

quencies. These systems have received much interest in the last decade because of the complicated dynamics which they

involve and the invariant sets that they can support. �Quasi-periodic driven� implies that the most elementary invariant

sets are tori. In addition, strange invariant sets can occur. The strange non-chaotic attractors [1] and the chaotic attrac-

tors are pointed out.

Heagy and Ditto [2] investigated the transition from two-frequency quasi-periodicity to chaotic behavior in a model

for a quasi-periodically driven magnetoelastic ribbon. The model system was a two-frequency parametrically driven

Duffing oscillator. They found that the transition to chaos takes four stages as the driven parameter is changed: torus

doubling, strange non-chaotic attractor, geometrically similar chaotic attractor, and a crisis leading to chaos. Belogort-

sev [3] analytically studied the tangent and doubling bifurcations of tori in the weakly non-linear Duffing oscillator

driven by a two-periodic external force. Stupnicka and Rudowski [4] numerically and theoretically studied the behavior

of the van der Pol-Duffing periodically forced oscillator at the passage through principal resonance. Almost periodic
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oscillations, frequency locking, transition to chaotic motion, and the jump from the non-resonant to the resonant state

were observed and interpreted. Yagasaki [5] studied, using the Melnikov theory, the intersections of the stable and

unstable manifolds of the normally hyperbolic invariant torus of a two-frequency perturbation of Duffing�s equation.
Maccari [6] used a perturbation method to study the quenching effect of multiple resonant parametric periodic excita-

tions on a generalized non-linear oscillator.

A special interest has been given to the quasi-periodically forced Mathieu oscillators. Hence, Broer and Simó [7] ex-

plored geometrically resonance tongues containing instability pockets in a linear Hill�s equation with quasi-periodic

forcing. Rand and co-workers in [8] and [9] determined an approximation of the regions of stability using four different

methods: direct numerical integration, Lyapunov exponents, regular perturbations, and harmonic balance. They also

investigated the interaction of subharmonic resonance bands using Chirikov�s overlap criterion [10] and the transition

from local chaos to global chaos. Belhaq and co-workers [11,12] analytically approximated QP solutions and studied

the stability of a damped cubic non-linear QP Mathieu equation, using a double perturbation method.

This paper considers a self-excited quasi-periodic Mathieu oscillator or a van der Pol-Mathieu QP oscillator of the

form
€xþ x2x ¼ �½ðq cosðmtÞ þ h cosðXtÞÞxþ ð�a þ bx2Þ _x� ð1Þ
Eq. (1) represents a four-dimensional dynamical system in the phase space R2 � T2 as can be seen by writing the system

as
_x ¼ y ð2Þ

_y ¼ �x2x� ½ðq cosðh1Þ þ h cosðh2ÞÞxþ ð�a þ bx2Þy� ð3Þ

_h1 ¼ m ð4Þ

_h2 ¼ X ð5Þ
The unforced version of Eq. (1) i.e.; q = h = 0 is the classical van der Pol equation and has a unique limit cycle. One

should expect within the regular behavior of systems of the form (1) the occurrence of 3-period-QP solutions. Two fre-

quencies should be related to the quasi-periodic excitation and one to the self-excitation induced by the term ða � bx2Þ _x.
A version of Eq. (1) was recently analyzed by Abouhazim et al. [13] in the case of X ¼ OðeÞ and m resonant with the

proper frequency x. They focused on the construction and the determination of existence and stability of 3-period-QP

solutions. They used the so-called double perturbation method [14]. This method uses two perturbation parameters to

naturalize the application of two reductions through the multiple scales method (MSM) [15]. The periodic solutions of

the second reduced system, which is autonomous, correspond to 3-period-QP solutions of the original oscillator.

This paper considers that the QP parametric excitation consists of a resonant frequency m with the proper frequency

x and a very slow frequency X ¼ OðepÞ where p is an integer P2. This very slow excitation induces quasi-static solutions

on the slow manifold resulting from an averaging over the fast scale of time. Consequently, a change in the nature of the

quasi-static solutions during a period of the very slow frequency, leads to the appearance of periodic bursters. Thus, in

this work the conditions of existence and the construction of QP solutions and periodic bursters solutions are focused

on. For detailed classification of bursters see Golubitsky et al. [16].

The following topics are covered in this paper; in Section 2 an averaging over the fast dynamics is performed; in

Section 3 the regular dynamics of Eq. (1) in the absence of the very slow parametric excitation i.e., h = 0 is analyzed;

in Section 4 the effects of the very slow parametric excitation are discussed. Numerical simulations and power spectra

are shown to complete the theoretical analysis.
2. Perturbation analysis

To analytically examine the response of the self-excited QP Eq. (1), a parameter of perturbation e is introduced, and
the parameters of Eq. (1) are scaled as follows: a ¼ e~a, h ¼ e~h, b ¼ e~b, q ¼ e~q, X ¼ ep eX and s = ept. Eq. (1) is then

rewritten as
€xþ x2x ¼ �e½ð~q cosðmtÞ þ ~h cosðeXsÞÞxþ ~a _x� ~bx2 _x� ð6Þ
The analysis is restricted to regular motions in the vicinity of the primary resonance one-half which is expressed as
m ¼ 2x þ r ð7Þ
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where r ¼ e~r is a detuning parameter. Using the multiple-scales method (MSM) [15], an approximate solution can be

expressed in the form
xðtÞ ¼ x0ðT 0; T 1; sÞ þ ex1ðT 0; T 1; sÞ þ Oðe2Þ ð8Þ
where T0 = t is a fast time scale, T1 = et is a slow time scale describing the envelope of the response, and s = ept is a very

slow time scale. In terms of the variable Tn, the time derivative becomes d=dt ¼ D0 þ eD1 þ Oðe2Þ, where Dn = o/oTn.

Substituting Eq. (8) into Eq. (6), using Eq. (7) and equating coefficients of like powers of e, we obtain the following

hierarchy of problems :
order Oð1Þ : D2
0x0 þ x2x0 ¼ 0 ð9Þ

order OðeÞ : D2
0x1 þ x2x1 ¼ �2ðD0D1x0Þ � x0ð~q cosðmT 0Þ þ ~h cosðeXsÞÞ � ð�~a þ ~bx20ÞðD0x0Þ ð10Þ
The solution of Eq. (9) is
x0ðT 0; T 1; sÞ ¼ AðT 1; sÞ expðixT 0Þ þ cc ð11Þ
where cc denotes the complex conjugate of the preceding terms. The quantity A(T1,s) is to be determined by eliminating

the secular terms at the next level of approximations. Substituting Eq. (11) into Eq. (10) and eliminating secular terms

leads
i2xðD1AÞ ¼ � ~q
2
Aei~rT 1 � ~hA cosðeXsÞ þ ixð~aA� ~bA2AÞ ð12Þ
where the overbar indicates the complex conjugate. The particular solution of Eq. (10) is then written as
x1ðT 0; T 1; sÞ ¼ � ~q

2ðx2 � ðm þ xÞ2Þ
AeiðxþmÞT 0 þ i

~b
8x

A3ei3xT 0 þ cc ð13Þ
Letting in Eq. (12) A ¼ 1
2
aeih where a and h are real functions, separating real and imaginary parts, the slow flow

modulation equations of amplitude a and phase c are obtained by
da
dT 1

¼ � ~q
4x

a sinð2cÞ þ ~a
2
a�

~b
8
a3 ð14Þ

a
dc
dT 1

¼ ~r
2
a� ~q

4x
a cosð2cÞ �

~h
2x

a cosðeXsÞ ð15Þ
where c ¼ 1
2
~rT 1 � h. One should point out that these equations are non-autonomous due to the presence of the term due

to the very slow parametric excitation cosðeXsÞ. Furthermore, one should notice that the modulations of amplitude and

phase are governed by a time scale T1 which is still faster than the very slow time scale s. Hence, one can conclude that

the dynamics of Eq. (1) is governed by three time scales.

An approximation of the solution of Eq. (6), up to order Oðe2Þ is given by combining the solution of order Oð1Þ given
in Eq. (11) and the solution of order OðeÞ given in Eq. (13)
xðtÞ ¼ aðs; T 1Þ cos
m
2
t � cðs; T 1Þ

� �
� q

2ðx2 � ðm þ xÞ2Þ
aðs; T 1Þ cos

3m
2
t � cðs; T 1Þ

� �
� b
32x

a3ðs; T 1Þ sin
3m
2
t � 3cðs; T 1Þ

� �
þ Oðe2Þ ð16Þ
In order to have a complete picture of the regular dynamics of the QP van der Pol–Mathieu Eq. (1) we study the

modulation equations (14) and (15).
3. Stationary solutions

The modulation equations of amplitude and phase (14) and (15) have at most three fixed points and a limit cycle as

stationary solutions.

• Trivial solution: a = 0 is all the time unstable. It is an unstable focus when it is the only fixed point of Eqs. (14) and

(15), and an unstable node and/or a saddle when it coexists with non-trivial fixed points.
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• Non-trivial solutions: a±
Fig. 1.
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The solution a+ is stable when it exists and a� is unstable when it exists.

• Limit cycle: It is stable when it exists and is due to the van der Pol term in Eq. (1). It exists in the regions of param-

eters where the non-trivial solutions a± do not exist.

A usual approach in studying such systems is based on the so-called quasi-steady state assumption meaning that the

fast variables are in a quasi-steady state i.e., the fixed points are no longer static points, but they depend on the very

slow excitation cosðeXsÞ. This term has been considered as constant during the perturbation analysis. For more details

about this approach see [17] and the reference therein. The dependence with respect to the very slow time scale can en-

able the solutions to cross the boundaries between different behaviors during one period 2p/X. This causes the periodic

bursters to develop as will be shown.

3.1. Fixed points

3.1.1. Case h = 0

In order to illustrate the effect of the slow frequency parametric excitation, consider first the case where h = 0 i.e., the

system (1) is only periodically forced by the resonant excitation q cosðmtÞ. The non-trivial amplitudes are constants and

are expressed in (17).

Fig. 1 shows that in the zone I only the unstable trivial focus exists, in the zone II the two non-trivial solutions also

exist and in the zone III only a+ coexists with the unstable trivial saddle solution. It is worth noting that the zone II

where a- exists shrinks to zero as a ! 0.

It will be shown in the next section that the zone I corresponds to the zone of existence of a limit cycle.

In Fig. 2 the stationary amplitudes a± are shown versus the amplitude of the resonant parametric excitation q. The
stable non-trivial solution is born through a saddle-node bifurcation and it increases while increasing the amplitude of
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Fig. 2. Stationary amplitudes versus the amplitude q of the resonant parametric excitation, for a = 0.1, b = 0.1, r = 0.01 and x = 1.

The dashed lines refer to unstable solutions and the continuous line to the stable solution.
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Fig. 3. Stationary amplitudes versus the detuning r for a = 0.1, b = 0.1, x = 1. The dashed lines refer to unstable solutions and the

continuous line to the stable solution.
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resonant excitation q. In Fig. 3 the stationary amplitudes a± are shown versus the detuning parameter r for different

values of the amplitude q of excitation. The maximum amplitudes correspond to the resonance i.e., r = 0. In both Figs.

2 and 3 a jump phenomena and a hysterisis cycle are observed in the transition between the trivial and the stable non-

trivial solution a+.

In terms of the original system (1), through the approximation of the solution x(t) given in (16), one can conclude

that in the zones II and III x(t) is a periodic solution with a frequency m/2. The zone I corresponds to a 2-period QP

solution, as we will see.

3.1.2. Case h5 0

When the very slow parametric excitation is present i.e., h5 0, the non-trivial amplitudes given in (17), are no more

constant solutions but periodic with a period 2p/X. This result is obtained through a Fourier series of the square root of

the expression given in (17). Through the approximated solution given in (16), the solution of the original system (1) in

the zones II and III is a 2-period-QP solution with fundamental frequencies m/2 and X.

In Figs. 4 and 5 it is respectively shown the numerical solution and the phase space of Eq. (1), for parameter values

corresponding to the zone III. In Figs. 6 and 7 the power spectra of the signal plotted in Fig. 4 is shown. The numerical
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power spectra confirm the analytical predictions concerning the nature of the solution and the fundamental frequencies

constructing it.

It is worth noting that the drawn conclusions are valid only when the parameter values are far from the boundaries

between the different zones, especially the zones I and II.

3.2. Limit cycle

In this section, the existence and an approximation of the limit cycle induced by the van der Pol term in the original

Eq. (1) is determined.

Expressing the modulation equations of amplitude and phase (14) and (15) in Cartesian form i.e., u ¼ a cosðcÞ and
v ¼ �a sinðcÞ leads to the following equations
du
dT 1

¼ ~a
2
uþ r

2
þ ~q
4x

� �
v�

~h
2x

v cosðeXsÞ �
~b
8
ðu2 þ v2Þu ð20Þ

dv
dT 1

¼ ~a
2
vþ � r

2
þ ~q
4x

� �
uþ

~h
2x

cosðeXsÞu�
~b
8
ðu2 þ v2Þv ð21Þ
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In order to apply a perturbation method to Eqs. (20) and (21), a perturbation parameter l in the level of the cubic non-

linearities is introduced. Applying the MSM [15] determines an approximate solution in the form
uðtÞ ¼ u0ðt1; t2; sÞ þ lu1ðt1; t2; sÞ þ Oðl2Þ ð22Þ
where t1 = T1 is a fast time scale, t2 = lT1 is a slow time scale describing the envelope of the response. In terms of the

variable tn, the time derivative becomes d=dT 1 ¼ ðo=ot1Þ þ lðo=ot2Þ þ Oðl2Þ.
At different orders of l the equations of modulations in Cartesian form are written as follows
order Oð1Þ : ou0
ot1

¼ X1v0 ð23Þ

ov0
ot1

¼ �X2u0 ð24Þ

order OðlÞ : ou1
ot1

¼ ou0
ot2

þ X1v1 þ
~a
2
u0 �

~b
8
u0ðu20 þ v20Þ ð25Þ

ov1
ot1

¼ ov0
ot2

� X2v1 þ
~a
2
v0 �

~b
8
v0ðu20 þ v20Þ ð26Þ
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where
X1 ¼
r
2
þ ~q
4x

�
~h
2x

cosðeXsÞ ð27Þ

X2 ¼
r
2
� ~q
4x

�
~h
2x

cosðeXsÞ ð28Þ

X�2 ¼ X1X2 ¼ �HðsÞ ð29Þ
From Eq. (29) a necessary condition to have periodic motion is that H(s) < 0 i.e., the parameters of the resonant para-

metric excitation, in the absence of the very slow parametric excitation i.e., h = 0, should belong to the zone I of Fig. 1.

The solution of the order Oðl0Þ equations, given in (23) and (24), are expressed as
u0 ¼ Bðt2; sÞeiX
�t1 þ cc ð30Þ

v0 ¼ i
X�

X1

Bðt2; sÞeiX
�t1 þ cc ð31Þ
where cc is the complex conjugate of the preceding terms. The condition of elimination of secular terms from Eqs. (25)

and (26) leads to
2
oB
ot2

¼ ~aB�
~b
2

1þ X2

X1

� �
B2B ð32Þ
Setting B = (b/2)exp(i/) in Eq. (32), the equations of modulations of amplitude b and phase / are given by
ob
ot2

¼ ~a
2
b�

~b
16

1þ X2

X1

� �
b3 ð33Þ

b
o/
ot2

� �
¼ 0 ð34Þ
Eq. (33) has two stationary solutions: an unstable trivial solution and a stable non-trivial solution corresponding to the

amplitude of the limit cycle given by
b2ðsÞ ¼ 8~a

~b 1þ X2

X1

� � ð35Þ
The phase / is a constant. It is clear that when h = 0 the amplitude b of the limit cycle is a constant. It is worth noting

that the amplitude b depends mainly on the parameters of the self-excitation i.e., a and b.
Up to the first order an approximation of the solutions of the modulation equations (14) and (15) is defined as
a ¼ bðsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðX�T 1 þ /Þ þ X�

X1

� �2

� sin2ðX�T 1 þ /Þ

s
ð36Þ

c ¼ arctan
X�

X1

tanðX�T 1 þ /Þ
� �

ð37Þ
In the region I far from the boundary with the zone II, for h = 0 and q = 0 Eq. (1) has a limit cycle due to the self-

excitation. When h = 0 and q 5 0 in the zone I Eq. (1) has a 2-period QP solution with m/2 and 2X* as fundamental

frequencies.

When q 5 0 and h5 0, in the zone I far from the boundaries with zone II, the solution of Eq. (1) is 3-period-QP

solution with (m/2), X and 2X�
0 as fundamental frequencies. Here X�

0 corresponds to X* given in (29) for h = 0.

In Figs. 8 and 9, the numerical time series and the phase space of Eq. (1) are shown. The parameter�s values are
belonging to the zone I of Fig. 1 and are far from the boundaries. In Fig. 10 the power spectrum of the signal and

its fundamental frequencies are indicated.
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4. Periodic bursters

Through the expressions of the quasi-static solutions of the modulations equations (17), (18) and (36), (37), in the

presence of the very slow parametric excitation, it is seen that periodic bursters depend on the very slow frequency X.

Therefore in a very long period 2p/X a given quasi-static solution may change its stability or even disappear e.g., the

limit cycle induced by self-excitation. The changes in the nature of a given solution are more likely for a choice of

the parameters, in the absence of the very slow excitation, putting the system in the vicinity of the boundary between

the zones I and II. Hence, this crossing of these boundaries during one period of the very slow dynamics leads to the

appearance of periodic bursters. In Fig. 11, we re-plot Fig. 1 with the effect of the very slow excitation included. In the

grey zones a given solution changes its stability or ceases to exist in a part of the period of the very slow dynamics. It can

be conjectured that these grey regions are the regions of existence of periodic bursters. In the grey region between the

zones I and II, the periodic burster solution is a heteroclinic connection between the 2-period-QP solution and the 3-

period-QP solution. The grey region between the zones II and III does not involve any change for the stable 2-period

QP solution; it involves only the disappearance of the unstable 2-period QP solution. In the zone I the solution of the

system (1) is 3-period-QP. In zones II and III the solution is 2-period-QP. In Figs. 12–14 a periodic burster solution
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X = 0.01 and h = 0.01.
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stable. In zone III only the stable 2-period-QP solution and the unstable trivial solution coexist. Grey regions correspond to periodic

bursters.
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Fig. 14. Periodic burster solution involving 2-period QP solution and 3-period QP solution. q = 0.2, m = 1.9, a = 0.1, b = 0.1, X = 0.01

and h = 0.01.
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Fig. 13. Periodic burster solution involving 2-period QP solution and 3-period QP solution. q = 0.19, m = 1.9, a = 0.1, b = 0.1, X = 0.01

and h = 0.01.
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involving the 3-period-QP and 2-period-QP solutions is plotted, for the parameters values belonging to the grey zone in

Fig. 11. In these figures the amplitude of the resonant excitation q is varied, such that the burster is spending less and

less time in the 3-period QP solution i.e., it approaches more and more the boundary with zone II.
5. Conclusion

In this paper the regular dynamics of a van der Pol–Mathieu equation subject to a quasi-periodic parametric exci-

tation has been studied. The latter consists of a resonant frequency with the proper frequency of the oscillator and a

very slow frequency. An averaging of the fast dynamics enables the determination of the quasi-static solutions which

form the slow manifold. A second perturbation method was performed to approximate the self-excited contribution on

the modulations equations of amplitude and phase. Different charts of regular behaviors are determined, including 2-

period-quasi-periodic solution, 3-period-quasi-periodic solution, and periodic bursters relating them. The periodic

bursters are due to the very slow perturbation which enables the solutions to cross the boundaries between different

behaviors during one period of it.



824 F. Lakrad et al. / Chaos, Solitons and Fractals 24 (2005) 813–824
As a continuation of this study the different bifurcations of the determined regular solutions and the roots to chaos

and to strange non-chaotic attractors will be investigated.
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