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a b s t r a c t

The influence of a time-dependent gravity on the convective instability of reaction fronts in
porous media is investigated in this paper. It is assumed that the time-dependent modula-
tion is quasi-periodic with two frequencies r1 and r2 that are incommensurate with each
other. The model consists of the heat equation, the equation for the depth of conversion
and the equations of motion under the Darcy law. The convective threshold is approxi-
mated performing a linear stability analysis on a reduced singular perturbation problem
using the matched asymptotic expansion method. The reduced interface problem is solved
using numerical simulations. It is shown that if the reacting fluid is heated from below, a
stabilizing effect of a reaction fronts in a porous medium can be gained for appropriate val-
ues of amplitudes and frequencies ratio r ¼ r2

r1
of the quasi-periodic vibration.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Several works have been devoted to studying the effect of a periodic vibration on the convective instability of reaction
fronts. The case of reaction fronts with liquid reactant and solid product was considered in [1], while the case where the
reactant and the product are liquids was analyzed in [2,3]. It was shown that a periodic vibration can affect the onset of
convection. Specifically it was indicated that the case where the polymerization front in liquids is different from the case
when the polymer is solid. The difference is that in liquids the convective instability may exist also in descending fronts
[4]. In the case of reaction fronts in porous media [5], the influence of periodic vibration on convective instability has also
been considered. The linear stability analysis along with a direct numerical simulations were performed and the influence
of vibration parameters on the onset of convection was examined. It is worth noticing that the problem of convective
instability under the influence of periodic gravity or periodic heating of a liquid layer or the effect of periodic magnetic
field on magnetic liquid layer has been widely analyzed during the last decades; see for instance [6–16] and references
therein.

To the best of our knowledge, while the influence of a periodic modulation on the convective instability was exten-
sively studied, only few works have been devoted to study the effect of a quasi-periodic (QP) vibration on the convective
instability. Boulal et al. [17] investigated the effect of a QP gravitational modulation with two incommensurate frequencies
on the stability of a heated fluid layer. The threshold of convective instability was determined in the case of heating from
below or from above, and it was shown that the frequencies ratio of QP vibration strongly influences the convective insta-
bility threshold. A similar study was performed to investigate the influence of QP gravitational modulation on convective
instability in Hele-Shaw cell [18]. Moreover, thermal instability in a horizontal Newtonian magnetic liquid layer with
. All rights reserved.
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non-magnetic rigid boundaries was also studied in the presence of a vertical magnetic field and a QP modulation [19]. It
was shown that in the case of a heating from below, a QP modulation produces a stabilizing or a destabilizing effect
depending on the frequencies ratio. In these works [17–19], the original problem is systematically reduced to a QP Mat-
hieu equation using Galerkin method truncated to the first order. Since the Floquet theory cannot be applied in the QP
forcing case, the approach used to obtain the marginal stability curves was based on the application of the harmonic bal-
ance method and Hill’s determinants [20,21].

The aim of this paper is to investigate the influence of QP gravitational vibration on convective instabilities of reac-
tion fronts in porous media. This study is motivated by applications arising in some physical problems, as for instance,
frontal polymerization [22] or the environmental pollution [23] when subjected to a QP vibration. Such a QP vibration
may eventually result from a simultaneous existence of a basic vibration applied to the system with a frequency m1 and
of an additional residual vibration having a frequency m2, such that m1 and m2 are incommensurate. Indeed, this residual
vibration may come from various sources as machinery, friction or just a modulation of the amplitude of the basic
vibration.

In what follows, we consider a QP vibration with two incommensurate frequencies in the vertical direction upon the sys-
tem containing a reaction reactant and a reaction product. This excitation causes a QP acceleration, b, perpendicular to the
reactant-product interface. The time dependence of the instantaneous QP acceleration acting on the fluids is then given by
g + b(t), where g is the gravity acceleration and b(t) = k1sin(m1t) + k2sin(m2t) where k1, k2 and m1, m2 are the amplitudes and the
frequencies of the QP vibration, respectively. Here, we consider reaction fronts in a porous medium with the fluid motion
described by the Darcy law and the Boussinesq approximation, which takes into account the temperature dependence of
the density only in the volumetric forces.

It is worthy to notice that the problem of reducing the original Navier–Stokes equations to a standard QP Mathieu equa-
tion using Galerkin method, harmonic balance method and Hill’s determinants [17–19] cannot be exploited here due to the
coupling of the concentration and the heat equations (reaction–diffusion problem coupled with the Darcy equation).

Therefore, to obtain the convective stability boundary, we first reduce the original reaction–diffusion problem to a singu-
lar perturbation one using the so-called matched asymptotic expansion, we perform a linear stability analysis, and then solve
the reduced interface problem using numerical simulations.

The paper is organized as follows. The next section introduces the model, while Section 3 deals with the linear stability by
approximating the infinite narrow reaction zone based on the formulation of the interface problem. Results and discussions
are also provided in this section. Section 4 concludes the work.

2. Governing equations

We consider an upward propagating reaction front in a porous medium filled by an incompressible reacting fluid submit-
ted to a QP gravitational vibration, as shown in Fig. 1. The model of a such process can be described by a reaction–diffusion
system coupled with the hydrodynamics equations under the Darcy law:
@T
@t
þ v:rT ¼ jDT þ qKðTÞ/ðaÞ; ð2:1Þ

@a
@t
þ v:ra ¼ dDaþ KðTÞ/ðaÞ; ð2:2Þ

v þ K
lrp ¼ gbK

l qðT � T0Þ 1þ k1sinðm1tÞ þ k2sinðm2tÞð Þc; ð2:3Þ

r:v ¼ 0: ð2:4Þ
with the following boundary conditions:
T ¼ Ti;a ¼ 1 and v ¼ 0 when y! þ1; ð2:5Þ
T ¼ Tb;a ¼ 0 and v ¼ 0 when y! �1: ð2:6Þ
Fig. 1. Sketch of the reaction front propagation.
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Here T is the temperature, a the depth of conversion, v = (vx,vy) the fluid velocity, p the pressure, j the coefficient of ther-
mal diffusivity, d the diffusion, q the adiabatic heat release, g the gravity acceleration, q the density, b the coefficient of ther-
mal expansion, l the viscosity and c is the unit vector in the upward direction. In addition, T0 is the mean value of
temperature, Ti is an initial temperature while Tb is the temperature of the burned mixture given by Tb = Ti + q. The function
K(T)/(a) is the reaction rate where the temperature dependence is given by the Arrhenius law [24]:
KðTÞ ¼ k0 exp � E
R0T

� �
: ð2:7Þ
where E is the activation energy, R0 the universal gas constant and k0 is the pre-exponential factor. For the asymptotic anal-
ysis of this problem we assume that the activation energy is large and we consider zero order reaction for which
/ðaÞ ¼
1 if a < 1;
0 if a ¼ 1:

�
: ð2:8Þ
In order to obtain the dimensionless model, we now introduce the spatial variables x0 ¼ xc1
j ; y0 ¼ yc1

j , time t0 ¼ tc2
1

jd, velocity v
c1

,
pressure pjl

K with c1 ¼ c=
ffiffiffi
2
p

and frequencies r1 ¼ j
c2

1
m1;r2 ¼ j

c2
1
m2. Denoting h ¼ T�Tb

q and keeping, for convenience, the same
notation for the other variables, we obtain the system
@h
@t
þ vrh ¼ DhþWZðhÞ/ðaÞ; ð2:9Þ

@a
@t
þ vra ¼ KDaþWZðhÞ/ðaÞ; ð2:10Þ

v þrp ¼ Rpðhþ h0Þ
0
1

� �
ð1þ k1sinðr1tÞ þ k2sinðr2tÞÞ; ð2:11Þ

divðvÞ ¼ 0 ð2:12Þ
with the following conditions at infinity:
h ¼ �1; a ¼ 0 and v ¼ 0 when y! þ1; ð2:13Þ
h ¼ 0; a ¼ 1 and v ¼ 0 when y! �1: ð2:14Þ
Here K = d/j is the inverse of the Lewis number, Rp ¼ Kc2
1P2R
l2 , where R is the Rayleigh number and P the Prandtl number de-

fined, respectively, by R ¼ gbqj2

lc3
1

and P ¼ l
j. In addition, we use the parameters d ¼ R0Tb

E and h0 ¼ Tb�T0
q . The reaction rate is then

given by:
WZðhÞ ¼ Z exp
h

Z�1 þ dh

� �
; ð2:15Þ
where Z ¼ qE
R0T2

b
stands for Zeldovich number.

The linear stability analysis will be carried out in the case of zero Lewis number (K = 0) corresponding to a liquid mixture.

3. Linear stability analysis

3.1. Approximation of infinitely narrow reaction zone

We perform an analytical treatment by reducing the original problem (2.9)–(2.14) to a singular perturbation one where
the reaction zone is supposed to be infinitely narrow and the reaction term is neglected outside the reaction zone. This ap-
proach, called Zeldovich–Frank–Kamenetskii approximation, is a well-known approach for studying the reaction front prop-
agation [24,25] a closed interface problem is obtained applying a formal asymptotic analysis assuming � ¼ 1

Z is a small
parameter. Denoting by f(t,x) the location of the reaction zone in the laboratory frame reference, the new independent var-
iable in the direction of the front propagation is given by
y1 ¼ y� fðt; xÞ: ð3:1Þ
Therefore, the new functions h1, a1, v1, p1 can be introduced such that:
hðt; x; yÞ ¼ h1ðt; x; y1Þ;aðt; x; yÞ ¼ a1ðt; x; y1Þ;
vðt; x; yÞ ¼ v1ðt; x; y1Þ;pðt; x; yÞ ¼ p1ðt; x; y1Þ:

ð3:2Þ
Consequently, the original Eqs. (2.9)–(2.14) can be re-written in the form (the index 1 for the independent variables is
omitted):
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@h
@t
� @h
@y1

@f
@t
þ v: erh ¼ eDhþWZðhÞ/ðaÞ; ð3:3Þ

@a
@t
� @a
@y1

@f
@t
þ v: era ¼WZðhÞ/ðaÞ; ð3:4Þ

v þ erp ¼ Rpðhþ h0Þ 1þ k1sinðr1tÞ þ k2sinðr2tÞð Þc; ð3:5Þ
@vx

@x
� @vx

@y1

@f
@x
þ @vy

@y1
¼ 0; ð3:6Þ
where we have set
eD ¼ @2

@x2 þ
@2

@y2
1

� 2
@f
@x

@2

@x@y1
þ @f

@x

� �2
@2

@y2
1

� @
2f
@x2

@

@y1
; ð3:7Þ

er ¼ @

@x
� @f
@x

@

@y1
;
@

@y1

� �
: ð3:8Þ
To approximate the jump conditions and then resolve the interface problem, we apply the matched asymptotic expan-
sions. To this end, the outer solution to the problem is sought in the form
h ¼ h0 þ �h1 þ � � � ; a ¼ a0 þ �a1 þ � � � ;
v ¼ v0 þ �v1 þ � � � ; p ¼ p0 þ �p1 þ � � �

ð3:9Þ
where (h0,a0,v0) is a dimensionless form of the basic solution.
For the inner solution, we introduce the stretching coordinate g = y1/� and then the inner solution is sought in the form
h ¼ �~h1 þ � � � ; a ¼ ~a0 þ �~a1 þ � � � ;
v ¼ ~v0 þ �~v1 þ . . . ;p ¼ ~p0 þ �~p1 þ � � � ; f ¼ ~f0 þ �~f1 þ � � �

ð3:10Þ
Substituting these expansions, into (3.3)–(3.6), we obtain the following first-order inner problem:
1þ @~f0

@x

 !2
0@ 1A @2~h1

@g2 þ exp
~h1

1þ d~h1

 !
/ð~a0Þ ¼ 0; ð3:11Þ

� @
~a0

@g
@~f0

@g
� @

~a0

@g
~v0

x
@~f0

@x
� ~v0

y

 !
¼ exp

~h1

1þ d~h1

 !
/ð~a0Þ; ð3:12Þ

@~p0

@g
¼ 0; ð3:13Þ

~v0
x þ

@~p0

@x
� @

~f0

@t
@~p1

@g
¼ 0; ð3:14Þ

~v0
y þ

@~p1

@g
¼ �Rph0 1þ k1sinðr1tÞ þ k2sinðr2tÞð Þ; ð3:15Þ

� @
~v0

x

@g
@~f0

@x
þ
@~v0

y

@g
¼ 0: ð3:16Þ
On the other hand, the matching conditions are written in the form
g! þ1 : ~h1 � h1��
y1¼0þ þ g

@h0

@y1

�����
y1¼0þ

; ~a0 ! 0; ~v0 ! v0
��
y1¼0þ; ð3:17Þ

g! �1 : ~h1 ! h1��
y1¼0�;

~a0 ! 1; ~v0 ! v0
��
y1¼0�: ð3:18Þ
We notice that from (3.13) we obtain that ~p0 does not depend on g, which implies that the pressure is continuous through
the interface. Next, denoting by s the quantity
s ¼ ~v0
x
@~f0

@x
� ~v0

y ; ð3:19Þ
we obtain from (3.16) that s does not depend on g. Finally, from 3.14, 3.15 and 3.19 we easily obtain that ~v0
x and ~v0

y do not
depend on g, which provides the continuity of the velocity through the interface.

We next derive the jump conditions for the temperature from (3.11). From (3.12) it follows that ~a0 is a monotone function
and 0 < ~a0 < 1. Since we consider zero-order reaction, we have /ð~a0Þ � 1 and we conclude from (3.11) that ~h1 is also a mono-
tone function. Multiplying (3.11) by @~h1

@g and integrating yields
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@~h1

@g

 !2
������
g¼þ1

� @~h1

@g

 !2
������
g¼�1

¼ �2
A

Z h1

�1
exp

s
1þ ds

� �
ds; ð3:20Þ
where we have set
A ¼ 1þ @~f0

@x

 !2

: ð3:21Þ
Next, subtracting (3.11) from (3.12) and integrating leads to
@~h1

@g

�����
g¼þ1

� @
~h1

@g

�����
g¼�1

¼ � 1
A

@~f0

@t
þ s

 !
: ð3:22Þ
Using the matching conditions and truncating the expansion:
h0 � h; h1jy1¼0� � Zhjy1¼0f
0 � f; v � v0; ð3:23Þ
the following jump conditions are obtained
@h
@y1

� �2
�����
y1¼0þ

� @h
@y1

� �2
�����
y1¼0�

¼ 2Z 1þ @f
@x

� �2
 !�1 Z hjy1¼0

�1
exp

s
Z�1 þ ds

� �
ds; ð3:24Þ

@h
@y1

����
y1¼0þ

� @h
@y1

����
y1¼0�

¼ � 1þ @f
@x

� �2
 !�1

@f
@t
þ vx

@f
@x
� vy

� �
jy1¼0

� �
: ð3:25Þ
3.2. Formulation of the interface problem

The interface problem will be written as a system of equations for the reactant and a system of equations for the product
as well as the jump conditions.

We have for y > f (in the unburnt medium)
@h
@t
þ v:rh ¼ Dh; ð3:26Þ

a � 0; ð3:27Þ
v þrp ¼ Rpðhþ h0Þ 1þ k1sinðr1tÞ þ k2sinðr2tÞð Þc; ð3:28Þ
r:v ¼ 0: ð3:29Þ
In the burnt medium (y < f), we obtain the system
@h
@t
þ v:rh ¼ Dh; ð3:30Þ

a � 1; ð3:31Þ
v þrp ¼ Rpðhþ h0Þ 1þ k1sinðr1tÞ þ k2sinðr2tÞð Þc; ð3:32Þ
r:v ¼ 0: ð3:33Þ
We finally complete this system by the following jump conditions at the interface y = f
½h� ¼ 0;
@h
@y

� �
¼

@f
@t

1þ @f
@x

	 
2 ; ð3:34Þ

@h
@y

� �2
" #

¼ � 2Z

1þ @f
@x

	 
2

Z hðfÞ

�1
exp

s
1=Z þ ds

� �
ds; ð3:35Þ

½v� ¼ 0: ð3:36Þ
Here we denote by [ ] the quantity [f] = fjf�0 � fjf+0. The above free boundary problem is completed with the conditions at
infinity:
y! þ1; h ¼ �1 and v ¼ 0; ð3:37Þ
y! �1; h ¼ 0 and v ¼ 0: ð3:38Þ
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3.3. Travelling wave solution

In this subsection, we perform the linear stability analysis of the steady-state solution for the interface problem. Indeed,
this interface problem has a travelling wave solution:
hðt; x; yÞ ¼ hsðy� utÞ;aðt; x; yÞ ¼ asðy� utÞ and v ¼ 0; ð3:39Þ
in which the steady-state solution hs is given by:
hsðt; yÞ ¼
0 if y < 0;

e�uy � 1 if y > 0;

(
ð3:40Þ
and the steady-state solution as is written as:
asðt; yÞ ¼
1 if y < 0;

0 if y > 0;

(
ð3:41Þ
where the number u stands for the stationary front velocity.
Introducing the coordinates in the moving frame defined by y1 = y � ut, the above travelling wave is now considered as a

stationary solution of the following problem:
@h
@t
þ u

@h
@y
þ v:rh ¼ Dh; ð3:42Þ

v þrp ¼ Rpðhþ h0Þð1þ k1sinðr1tÞ þ k2sinðr2tÞÞc; ð3:43Þ
r:v ¼ 0; ð3:44Þ
together with the jump conditions (3.34)–(3.36).
To perform the linear stability analysis, we introduce a small perturbation to the stationary solution. To this end, we con-

sider a perturbation of the reaction front of the form
fðt; xÞ ¼ ut þ nðt; xÞ; with nðt; xÞ ¼ �1ðtÞeikx: ð3:45Þ
The stability of the solution is carried out by assuming the solution of the problem in the perturbed form:
h ¼ hs þ ~h; v ¼ v s þ ~v ; ð3:46Þ
where
~hðt; x; yÞ ¼ hjðy; tÞeikx; for j ¼ 1;2;

~vðt; x; yÞ ¼ v jðy; tÞeikx; for j ¼ 1;2:
ð3:47Þ
Here the index j = 1 corresponds to solutions for z < 0 and j = 2 corresponds to those for z > 0. For simplicity, we eliminate the
pressure p and the component vx of the velocity from the interface problem applying two times the operator curl. Thus, we
obtain the following problem

For the burnt media (y < 0):
v 001 � k2v1 ¼ �Rpk2 1þ k1sinðr1tÞ þ k2sinðr2tÞð Þh1; ð3:48Þ
@h1

@t
� h001 � uh01 þ k2h1 ¼ 0: ð3:49Þ
For the unburnt media (y > 0):
v 002 � k2v2 ¼ �Rpk2ð1þ k1sinðr1tÞ þ k2sinðr2tÞÞh2; ð3:50Þ
@h2

@t
� h002 � uh02 þ k2h2 ¼ u expð�uyÞv2; ð3:51Þ
Taking into account that
hjn¼�0 ¼ hsð�0Þ þ nh0sð�0Þ þ ~hð�0Þ; ð3:52Þ
and
@h
@y

����
n¼�0

¼ h0sð�0Þ þ nh00s ð�0Þ þ @
~h
@y
ð�0Þ; ð3:53Þ
we obtain the following jump conditions:
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h2ð0; tÞ � h1ð0; tÞ ¼ u�1ðtÞ; ð3:54Þ
h02ð0; tÞ � h01ð0; tÞ ¼ ��1ðtÞu2 � �01ðtÞ þ v1ð0; tÞ; ð3:55Þ

�1ðtÞu2 þ h02ð0; tÞ ¼ �
Z
u

h1ð0; tÞ; ð3:56Þ

v ðiÞ2 ð0; tÞ ¼ v ðiÞ1 ð0; tÞ i ¼ 0;1: ð3:57Þ
3.4. Results and discussion

To construct the convective instability boundaries, we solve numerically the problem (3.48)–(3.51) with the jump con-
ditions (3.54)–(3.57) for given values of Z and k and for various values of Rayleigh number Rp. The numerical accuracy is con-
trolled by decreasing the time and space steps.

Fig. 2 depicts the variation of the maximum of temperature as function of time. It can be seen from these plots that if the
Rayleigh number Rp is less than a critical value Rc, the solution is decreasing in time which corresponds to a stable (bounded)
variation of the maximum of temperature. For values of Rp larger than Rc, the maximum of temperature presents unbounded
oscillations which corresponds to unstable solutions. To detect this instability, we start our computations with small Ray-
leigh numbers and then we increase it slowly until the critical value of the Rayleigh number is captured. The figure shows
that the maximum of temperature variation is decreasing for Rp = 26 and increasing for Rp = 28 indicating that the critical
Rayleigh number is approximatively located between, i.e. Rc � 27.

Fig. 3 shows, for k1 = 5 and r1 = 500, the variation of the critical Rayleigh number as function the amplitude k2. The plots
indicate that for small values of the frequencies ratio r = r2/r1, as the amplitude k2 increases, the critical Rayleigh number
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decreases from a certain value of Rp(�325). If r is increased substantially, a stabilizing effect appears in a region correspond-
ing to small values of k2. In this zone, one can expect a regaining of stability of reaction fronts. For higher values of k2 the
critical Rayleigh number decreases for different r indicating that large values of k2 induce a destabilizing effect. Fig. 4 illus-
trates similar results for r1 = 250. It is seen in this figure that for higher values of r, a stabilizing effect appears in two suc-
cessive regions corresponding, respectively, to small and moderate values of the amplitude k2. This result means that
increasing r, stability may be gained in certain specific intervals of k2.

Finally, Fig. 5 shows, for given amplitudes and for different values of the frequencies ratio r, the critical Rayleigh number
as function of r1. This figure indicates clearly that in the absence of QP vibration (r1 = 0,r2 = 0), the curves start at the value
Rc = 26 corresponding to the unmodulated case, which is in good agreement with the previous works [5,26] and hence val-
idating the numerical simulations. This figure also depicts an interesting phenomenon, that is in a certain interval of r1, the
critical Rayleigh number increases from the unmodulated case Rc = 26 while undergoing oscillations. Increasing r, the oscil-
lating variation of the critical Rayleigh number increases creating a repeated alternating zones where stability is gained. At a
certain value of r1 � 700, the critical Rayleigh number suddenly drops to reach the unmodulated case, Rc = 26. Above
r1 � 700, the frequencies ratio has no effect on the critical Rayleigh number and the problem becomes equivalent to the
unmodulated case.
4. Conclusion

In this work we have studied the effect of a vertical QP gravitational modulation on the convective instability of reaction
fronts in porous media. Attention was focused on the case where the QP vibration has two incommensurate frequencies and
where the heating is acted from below such that the sense of reaction is opposite to the gravity sense.
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To approximate the convective instability threshold, the original reaction–diffusion problem is first reduced to a singular
perturbation one using the matched asymptotic expansion. Thus, the linear stability analysis of the steady-state solution for
the interface problem is performed. The obtained reduced interface problem is then solved numerically.

It was shown that for relatively small values of the amplitudes k1 and k2 of the QP vibration, an increase of the frequencies
ratio r has a stabilizing effect (Figs. 3 and 4). The results also revealed that for given values of k1 and k2 and below a critical
value of the frequency r1, an increase of the frequencies ratio produces a stabilizing effect. In this interval of r1, the convec-
tion threshold grows from the critical Rayleigh number of the unmodulated case, Rc = 26, undergoing an oscillating variation.
This alternating variation indicates that for appropriate values of parameters, a more pronounced stabilizing effect can be
gained. At a certain critical value of r1 � 700, the critical Rayleigh number suddenly drops and tends back to the unmodu-
lated case, Rc = 26. Above r1 � 700, the frequencies ratio has no effect on the critical Rayleigh number and the gravity vector
can be considered nearly as time-independent.

The results of this work show that in the presence of a QP vibration, the convection instability of reaction fronts in porous
media can be controlled and the reaction fronts may remain stable in some regions and for certain combinations of the
amplitudes and the frequencies ratio of the QP vibration.
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