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1. Introduction 

Given the Mathieu-type differential equation 

+ ~xi + 13x i + COo 2 (1 + h cos cot ) x = cx 2 (1) 

where (x, 13, coo' h, and c are real constants, co a real positive and g = -c% COo). Periodic 

solutions for (1) can be found by using either the stroboscopic method which associates the 

Poincar6 map T, or by application of formal asymptotic method (eg. see [14]). A fixed point of T 

(corresponding to a 2~/a~-periodical solution of (1)) with complex eigenvalues s and s present a 

Poincar6-Hopf bifurcation of resonance p/q when s = exp (2i~p/q), with p and q relatively 

prime. In the g-parameter  space, we shall call Pp/q the corresponding point for that 

bifurcation. 

In [3] we have constructed numerically the 4-subharmonic solutions for (1) near point of 

resonance P4 (P = 1, q = 4) and we have shown ( as in [1] and [11] ) that there exists a horn K 4 in 

the ]a-parameter space corresponding to the existence of these solutions. On the other hand, we 

have shown (numerically in [3]) the coexistence of 4-subharmonics and closed invariant curve in 

horn K 4 near P4 ( see also [2] for external excitation case ). The boundaries N 1 and N 2 of this 

horn are defined by the saddle-node bifurcation locus of 4-subharmonics produced at P4 ( Fig. 1). 
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Fig. 1. [ ~  : coexistence region of 4-subharmonics and invariant curve, 

P : Hopf bifurcation locus, P4 : resonace point of order 4, 

N 1, 2: saddle node bifurcation locus. 

In order to approximate N 1' 2 theoretically, several authors ([8], [9]) employ the Melnikov 

function Ma(t0) for the 4-subharmonic bifurcations and in particular the function's approximation 

to the first order M~I (to). This function, which is a variant of the Melnikov function for homoclinic 

bifurcations ([13]) Ml(t0) ( where Ml(t 0) = lira M~I (to) when q-+ oo ) does not allow us to 

approximate the 4-subharrnonics. 

The surpose of this paper is to construct near resonance point of order 4 analytical approximations 

of the 4-subharmonics, the saddle-node bifurcation locus of 4-subharmonics, and the homoclinic 

transition locus of principal saddle for (1). In particular, we determine the region in 

phenomelogical parameters space in which the ordinary principal saddle (or non-homoclinic 

saddle) is in the presence of two asymptotically stable solutions. 

2. Saddle -node  bi furcat ion locus  of  4 - s u b h a r m o n i c s  

One of methods adapted to construct N 1' 2 is the Bogoliubov-Mitropolsky method ([7]). 

However, this method which was developed to order 2 in c and which allows to study the 

fundamental or 2-subharmonic solutions, creates some difficulty for the study of q-resonance 

when q > 4. Indeed, the presence of multiple solutions near Pq requires a development of this 

method to order 3. We therefore suggest expanding this order within a more general case and 

applying it to (1) for q = 4. 
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In order to construct the solutions of (1) in the neighbourhood of Pq, we impose: 

o~ = (c0/q)2 + Aco, and then the dependance of the parameters on e will be selected 

accordingly ([ 10]) 

h = Eh, ~ = E~,  c = E"C , (~ = E 2 ~ ,  Aco = E2Aco (19) 

where E is small parameter. By substituting (2) into (1) we obtain 

+ ( ~ ) 2 x =  e f ( x ,  5, co t )+e  z g ( x , 5 , c o t ) + E  3h (x ,~ , co t )  

where 

(3) 

f = cx 2- ~X5 -'h(P-~-~ )2X CosO3t, g = -  AcoX- ~5, 
'.4 

h = - Aco hx coscot. 

As in [7], we find the solutions of (3) in the form 

x = a c o s  ~ + e u 1 + E 2 u 2 + E3 U3 .... ~t = pcot/q +0 (4) 

where each u i (a, ~, cot) is 2re-periodic function in gt and cot. The amplitude a (t) and the 

phase 0(t) are defined by the system 

da = c A I + E 2 A 2 + E  3 A 3 .... 
dt 

d._0_0 = ~ BI+ £2 B2 + E 3 B3 ... 
dt 

(5) 

where Ai(a,0 ), Bi(a,0 ) are 2rt-periodic functions in 0. 

Substituting (4) and (5) into (3), expanding, and equating coefficients of like powers of c, we 

have the first three terms 
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D2Ul p(o.2 
- - +  (~--) Ul = f +  2pc0 Alsin~ + 2a P ~  BlCOS~, 
0t 2 q 

_ _  p ~  .2pro OB1 DB1 D2u2 + ( )2u2= (-~-- A2 + a Al+a B1 + 2AIB1) sin~t 
Dt 2 - Da D 0 

+ (2a nm@ B2 _ --DA~ A1 - DA1 B1 + aB21) cosy  
H Da DO 

f 2 
+Of ul-2A1 D`ul -2B1 D2ul +(AlCOSW- aBlsin~+ DUl) Of - -  - - + g ,  

Dx DaDt aODt Dt DR 

D2U3 (p(0."U3 2ape0 DA2 B1 DA1 + q ~  = (--~--  B3- DA2 A1- DA1 A2- - - -  Bi+2aB1B2)cosllt 
Dt 2 Da Oa DO DO ' 

p• DB2 OB1 DB2 DB1 (6a,b,c) 
+(2 Aa+ a A 1 + a A2+ a B1 + a B2+2(A1B2+A2BI))sin~ 

Da Da O0 DO 

Ou_ ! (A1DAI_I +B1DAI) _ 0ul (AI~B1 +BI~_~)_A 2 D2Ul _B 2 D2ul -2A2 D2ul 
- Da Da D0 O0 Da Da--- 2- 1 DO e DaD-t- 

D2Ul O2u 2 D2u2 + 
- 2A1B1 o2u---L- 2 B 2 - - -  2A1 - - -  2 B 1 - -  +ul Dg +u2 Df h 

DaD0 D0~t 3aDt DODt Dx Dx 

(Dul__ +Aacos~-aBlsin~) Dg +(Du2 . . . .  DUl ~ DUl, Of + - -  _ _  +A2COS/I/-ab2sm~+A 1 -  +131- -  ) -  
Dt D)i Dt Da D0 D~ 

D 2 _ _  
u2 D2f +1 (oul +AlCOS~_aBlsinv) D2f +Ul(DUl +AlCOS~-aBlsin~) 02f 

, + T O ~  z Dt Dx - ~ -  Dt DxDR 

where all the derivatives of f and g are evaluated for x = a cosy  and i=  - (apm/q) sin V. In the 

special case: g = 0 and h = 0 we find the first two terms (6,a,b) obtained in [7] (p. 217-218). 

In order to determine functions u i, A i and B i, we take u i = 0 as the solution without a second 

member and suppose the absence of secular terms in u i. The periodic solutions for (3), which 

correspond to the stationary regimes of (5), are the roots of the algebraic system 

~A 1 + e  2 A  2 + e  3A 3 + . . . = 0 ,  ~B 1 + c  2B 2+C 3B 3 + . , . = 0 .  (7)  
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The application of the asymptotic method to equation (3) gives the first order (for p/q=l/4) 

x = acos ( ~ + 0 ) ,  da  =0,  dO = 0 (8) 
dt dt 

and then the second order 

x = a c o s ( ( 0 t / 4 + 0 ) + U l  

2 
d a = _ oA_Ra_ 2~c dO _ 2A(0 + h20) 6 ~  80c2 
dt 2 (02 a3, dt (0 1-~- - ( + 30)3 ) a2, 

2~}a2 (~_ 
Ul = 8ca2 - 8ca2 cos ( ~  + 20) - ~ sin + 20) 

0)z 3m2 

+ 1-1~6(lcos( 4 5 ~ + 0 ) + c o s  ( 4 3 ~ - 0 ) ) .  

The stationary values of a are given by 

(9) 

a 2 -  °~0)2g ( 8 = 0 o r l ) ,  ( 10a )  
4~c 

a2= 60) 3 2A0) hZ(0 ). (10b)  
160c 2 + [}20) 2 ( ~  + 

In consequence, it follows on the one hand that a = 0, which corresponds to the solution 

x(t) = 0 ( stable for a > 0 and unstable for (~ < 0 ) and on the other hand that: 

a = @0~0)2/4~c (1 1 a) 

(m)2 h2(02 160c 2 + [~2~ 2 
0) 2 

- 384 ( )(:z (11b) 
4 24 13cm 

thus establishing an approximation of the stable quasi-periodic solution C ( for o~ < 0 ) and its 

bifurcation locus B (Fig. 2). 

From (6c) we obtain the 3rd order approximation of the 4-subharmonics 
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/x = a c o s ( c o t / 4 + O ) + u l + u 2  

da ~a_ 213ca3 ha3((20c2 ~2 [3c . . . . .  + - sin40 - cos40) 
dt 2 o)2 90)3 72-~ ) 9o12 

dO 2Am + h2o) ~2 ~2 ~c - +80c--2)a2+ ha2(( 20c-2 cos40 + 
dt co 192 - ( ~  3CO3 9co3 - ~ ) 9m 2 

sin40) 

2 ~ha2 
u2 = ( 16c2 ~ ) a 3 c o s 3 g t +  1013ca3 sin3~+ 20hca2 sin4(~-0) 

30) 4 20) z 3co 3 45m 2 cos4(gt-0)- 

_ 7hca 2 cos2 (w20)+  h[3a2 9m 2 ~ sin2(gr-20) - 21o) 2hca2 cos2(3~//-20) 

(12) 

[}ha 2 
7~@0 cos(9gt-80)+ h2a sin(7gt-80). 

- ~ -  sin2(3~-20)+ 

The stationary values of  a and 0 are given by (12b,c). After elimination of  0 we obtain a second 

order equation in a 2, which gives real solutions when its discriminant is positive or nul. This 

condition is given by 

(m/4)  2 + & < co 2 _< (co/4) 2 + zX2 

A1, 2 = ( (8o0g00~ - 16Co(A+B2))co _+ 1/-64AcoZo~2(D2+D 2) ) / 32(A+B2), 

(13) 
A = D21 + D 2- D o - B 2 , Do = 213c/co2, Bo = [32/6co + 80c2/3co 3, 

Co = h2co/192, D1 = 20hc2/9m 3 - ~2h /72m,  D2 = ~hc/90)  2. 

For parameter values such as A _< 0, equation (13) defines the existence region for 4-subhannonic 

which appears as a saddle-node bifurcation on the curves N,~' 2 given by 

0)2 = ( co/4)2+ A1 and m 2 = ( co/4)2+ A2 ( 1 4) 

For  the fixed parameter values: co = 2, [3 = .2 ,  c = 1 and h = . 1, the locus N41' 2are represented 

by a dotted line in Fig. 2 and compared to the locus (crossed line) obtained numerically in [31. 

Furthermore, the coordinates of point P4 given by both methods are: c~ = 0, COO= .498896. The 

curve B, illustrated in Fig. 2 (solid line), approximates the saddle-loop bifurcation locus, which 

establishes the only possible transition to describes the destabilisation of  C (see also [31, [21,161, 

[4] for similar results). The locus B is compared to a single numerical value (single point) 
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obtained numerically in [3]. 
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Fig. 2. Bifurcation locus: N I '  2( ...anal. approximation, +++ numer, integration), 

B ( - -  anal. approximation, • numer, integration). 

These results give: In the domain delimited by curves B and N 1 , the stable quasi-periodic 

solution C and the 4-subharmonic coexist near P4" 

In fact the slope of a curve B given by (1 lb) is included between those of curves N41 and N 2 

given by (14) (see Fig. 2). Note that theorems available at present ([15],[12]) specify the existence 

of an invariant curve C (of T) only on the exterior of K 4. 

3. Homoclinic transition 

Using the Melnikov method [13] to study equation (1), we obtain the homoclinic Melnikov 

function 

Ml(to) = 6co6h (I](c00) - 612((o0) ) sin c0t0 
c 2 

where 

11 = exp x (1- exp x) sin.(ort/COo dx, 

( 1+ exp x )3 .] 

216 co 713K 36o)50( cc [36°2 + - - +  )J (1 5) 
c 3 c 2 c 3 

i2 Eexp 2 1 exp sin d 1 + exp 5 



286 M. BELHAQ 

j = f l  "~ [exp 2x (1_ exp x)2/( 1+ exp "c )6] d'c, : f l  3, (,_ • d, 

The first two integrals in (15) can be evaluated by the method of residues and the two last ones 

directly, we obtain 

-4re (03/030) 2 I2 = -r: ((6o/030)2+(03/030) 4) (1 6) 
J=3~0 - K =  1 11-  

sh (rc03/030) 3 sh (u03/030) 

For the fixed parameter values: 03 = 2, 13 = .2, c = 1 and h = .1, the approximation HI, 1-12 of the 

homoclinic transition locus in the parameter space It= (-c~, 600) is given by calculating the quadratic 

zero of Ml(t0), we have 

c ~ : - @  CO(~+ 8~Z ( 4 / 4 - 1 )  (1 7) 
2o3o sh (2rt/mo) 

In Fig. 3 we show the bifurcation curves HI, 2 and N 1' 2.  In the region 1 there exist transverse 

homoclinic intersection points of the stable and unstable manifolds of the principal saddle 

((o2 / c, 0). In the region 2 the 4-subharmonics and the quasi-periodic solution C (invariant closed 

curve) may exist in the presence of a regular saddle ( or non-homoclinic saddle). 
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Fig. 3. H1, 2 : Homoclinic transition locus of equation (1), 

N 1, 2: saddle-node bifurcation locus of 4-subhamaonics. 
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4. Conclusions 

The numerical constructions of the periodic solutions and their bifurcation locus in parameter 

space near a resonance point of order 4 require very extensive treatment using several algorithms 

simultaneously (fixed point algorithms [2], Lattrs method [5]). On the other hand, a 3rd order 

asymptotic method gives near P4 such approximations in the whole phenomelogical parameter 

space directly from the system itself. This 3rd order expansion may also be used to examine the 4- 

resonance for other oscillators representing a degenerate Poincarr-Hopf bifurcation of 4-resonance 

and allows us, in general, to obtain better approximations for the other resonances. 

The coexistence of two asymptotically stable solutions near P4 may to occur in the region of 

parameter space where the principal saddle is not homoclinic. 
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